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Two-dimensional gel-electrophoresis (2DE) images show the expression levels of several hundreds of proteins where each protein
is represented as a blob-shaped spot of grey level values. The spot detection, that is, the segmentation process has to be efficient as
it is the first step in the gel processing. Such extraction of information is a very complex task. In this paper, we propose a novel spot
detector that is basically a morphology-based method with the use of a seeded region growing as a central paradigm and which
relies on the spot correlation information. The method is tested on our synthetic as well as on real gels with human samples from
SWISS-2DPAGE (two-dimensional polyacrylamide gel electrophoresis) database. A comparison of results is done with a method
called pixel value collection (PVC). Since our algorithm efficiently uses local spot information, segments the spot by collecting
pixel values and its affinity with PVC, we named it local pixel value collection (LPVC). The results show that LPVC achieves similar
segmentation results as PVC, but is much faster than PVC.
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1. INTRODUCTION

Computer vision is a research line which tries to extract as
much information from images as possible. Biomedical im-
age analysis continues to be an active area of research, with
many encouraging results, but also with a number of diffi-
cult problems still to be addressed [1].

Two-dimensional gel electrophoresis (2DE) is one of the
methods able to separate thousands of proteins [2]. Different
cell samples can exhibit even more than 2000 proteins. On
such a 2D gel image, two coordinates characterize each pro-
tein: its isoelectric point and its molecular weight. Along one
dimension, proteins are sorted electrophoretically according
to their isoelectric point. They stabilize at points where their
net charge is zero. Along the other dimension, proteins sepa-
rate according to their molecular weight. Thus, the isoelectric
point and the molecular weight uniquely identify a protein
spot in a gel. The separated proteins can be stained with dif-
ferent dyes so that they are amenable to imaging. The gels
are scanned and normally stored in a database. The process,
though lengthy and subject to enormous experimental un-

certainty, is still much cheaper than other competing tech-
nologies.

Figure 4(a) (neglect hand-marked annotations) shows a
typical image of a 2D gel. Just by glancing at it, the reader can
imagine how hard a task it is for any automated algorithm to
accurately identify hundreds of protein spots among the var-
ious kinds of noise, and also to compare and match proteins
over several gels when presented with multiple copies of gels
made from similar cell samples.

There is a critical need for image analysis that will enable
accurate, rapid and reliable spot detection [3]. The spot de-
tection, that is, segmentation, process has to be efficient as
it is the first step in the gel processing. Namely, inaccurate
spot detection has clear ramifications for the spot matching
process.

Before we go to the explanation of our algorithm, let
us first take a look at the basic approaches to spot detec-
tion: Edge detection algorithms are traditionally used in such
scenarios [4, 5]. Mathematical morphology-based methods
are also widely used [6–8]. Popular methods include water-
sheds by immersion [9], marker-based watersheds [8], and
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H-domes method [7]. The scale space blob detection method
can help us to select the markers [10, 11], which is sel-
dom trivial. Our algorithm is basically a morphology-based
method using seeded region growing as a central paradigm
(see The Image Processing Handbook for standard algorithms
[12]).

2. MATERIALS AND METHODS

2.1. Algorithm

In a recognition system, a preprocessing step to segment the
pattern of interest from the background, noise, and so forth,
usually precedes [13] the actual recognition process and for
the current task there is no exception. 2DE images show the
expression levels of several hundreds of proteins where each
protein is represented as a blob shaped spot of grey level val-
ues. In our case, we are dealing with 8-bit grayscale images
(while in the used SWISS-2DPAGE database [14] the images
are available in 8-bit format), that is, 256 values are possible.
In image processing, a common approach which speeds up
a process is coarse-to-fine processing. In the context of gels
this means that we could apply our methods first on 8-bit
gel images and then refine obtained results on 16-bit images.
Similary, we could first process smaller images and then re-
fine the results on bigger images. The segmentation task at
hand consists of a separation of the image into what is back-
ground and what are spots and the challenging parts are the
cases of overlapping spots, varying background and a high
level of noise in the images.

Namely, gel images are normally very noisy, so we first
have to reduce the influence of noise on the subsequent pro-
cessing, that is, to smooth the image. We do that by applying
a 3×3 median filter [12] and then reducing the image size to
the width of 500 pixels (with maintained aspect ratio), which
also speeds up next steps of the algorithm. As already men-
tioned above, we could apply coarse-to-fine principle here to
compensate for possible deleterious effects of the reduction
step. Note that in SWISS-2DPAGE database [14], the images
are stored with approximate width of 1000 pixels, but they
are not preprocessed for noise and consequently we have to
address the problem of noise. In the process of noise reduc-
tion, we conform to the rule that in any fitting or smoothing
operation the window size has to be smaller than the features
of interest [12]. Thus, in this preprocessing step, we reduce
the noise and end up with more compact representation of
spots.

Since our algorithm efficiently uses local spot informa-
tion and segments the spot by collecting pixel values, we
named it local pixel value collection (LPVC). Figure 1 gives
the basic principle of LPVC: find the peak (the darkest) value
for each spot. For each peak locally in the semiuser-defined
neighborhood, the spot grows to its boundaries by going
through the local intensity range with the user-defined step.
The pseudocode (see Algorithm 1) explains the algorithm in
more detail as it gives its basic steps; note that we have two
user-specified parameters: the initial number of the nearest
neighbors used in the segmentation of each spot (NN) and
the step size through the local intensity range (STEP).

1) Peak

2) Neighbourhood

3) Step

Dark intensity

Light intensity

Figure 1: Basic principle of LPVC illustrated on a simple represen-
tation of an image intensity cross-section.

FindBackground();
FindPeaks();
EliminateNonPeaks();
FindNearestNeighbors();
for each peak do
{

if all NN outside ROI //Region Of Interest
then enlarge NN and ROI;

for darkest to lightest intensity value in ROI
in STEPs do

{
ThresholdROI();
SegmentSpot();
ApplySpotCriteria();

}
MarkAcceptedSpotInResultImage();

}

Algorithm 1

The details about each step are given in the continuation.
The next step after preprocessing is to dynamically iden-

tify the background. This is achieved by applying a two-
step Otsu thresholding technique [15]. The input to Otsu
thresholding technique is a histogram of the input image,
which is then divided in two classes and the interclass vari-
ance is minimized. Since a number of spots in the gel image
are weakly expressed, we soften the border between the two
classes, namely, spots and background, by applying the Otsu
technique in two steps. First, we calculate the basic thresh-
old and then this value is used to calculate the new, soft-
ened threshold based only on pixels in the image that are
lighter than the calculated threshold. This dynamically ob-
tained global threshold is then used to eliminate the back-
ground. (Note that we can apply this technique also locally
on the image parts to better capture local properties of the
background.) For more details about the technique see [15].

To identify spots, we interpret the intensity as the third-
dimension information in the input image. We employ an-
other operator in the 3×3 window size to identify local peaks.
The peak is established if the pixel in the middle has the same
or darker value as all surrounding, neighboring pixels. Gen-
erally, this operator is called 8-neighborhood filter [12].

Now that we have the information about peaks, we can
correlate them in order to investigate spot sizes; but first we
have to find the center of mass of each peak as they could
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Figure 2: Illustration of LPVC segmentation of a single spot: in the
circular region of interest we go through the local intensity range
from the peak of interest intensity to the lightest intensity value,
threshold the region of interest at each desired level, segment the
temporary spot and test it if it is a real spot. The first figure gives
the region of interest with the peak of interest centered in it and all
in processing used local information. The last figure gives the last
accepted spot by LPVC technique. All other figures illustrate which
pixels are kept in the processing and how the spot of interest grows
while we move through the intensity range.

be saturated, that is, a region bigger than one pixel can be
labeled as peak. Normally, each spot is, among other infor-
mation, represented by its x and y coordinate of the peak
[16, 17]. In order to do this, we employ seeded region grow-
ing [12]. A seed can be the first pixel in the peak region
and we recursively visit all the pixels in the peak region. In
this way, we calculate for each peak its center of mass. For
more details about the seeded region growing method see
[12].

The first step towards establishing correlation of spots is
to find the nearest neighbors for each identified peak. For this
task, Euclidean distance [12] seems the most logical choice.

Now that we have this correlation information for each
peak, we can eliminate some obvious nonpeaks based on the
following condition: if the peaks are close together (we ex-
perimentally set this distance to d < 6 pixels) and at the same
time they have similar intensity values (Δipeaks < 3), while the
intensity of the lightest pixel on the path between the peaks,
is too similar to the intensity of the lightest peak (Δipath < 3),
then we eliminate the lightest peak in a pair from further pro-
cessing. The condition describes the fact that in such cases we
are probably dealing with only one spot and not two.

As mentioned above, we have two user-specified param-
eters, which are used in the continuation of the algorithm: N
is the initial number of the nearest neighbors used in the seg-
mentation of each spot (NN in pseudocode) and S is the step
size through the local intensity range (STEP in pseudocode).

In the next step, we again find Nmax = 8 (Nmax ≥ N)
nearest neighbors for each kept peak.

For each kept peak we do the following using the prepro-
cessed image (remember that this is the input image from
which we eliminated noise): the region of interest is defined
as an inner circle around the peak of interest with the radius
defined by the truncated integer value of the distance to the
Nth nearest neighbor (note the black mask in Figure 2). If all
N − 1 nearest neighboring peaks are outside of this region,
then we increase N by one. This is repeated until at least one
nearest neighbor is not inside the region of interest.

We find the lightest intensity value in the region of inter-
est and we move inside the constrained intensity range from

the peak of interest intensity to the lightest intensity value
with step S (Figure 2). Firstly, we threshold the region of in-
terest with the temporary intensity value. (For further details
about thresholding see [12].) Secondly, we segment the tem-
porary spot by applying the seeded region growing method,
where the peak of interest is our seed. (For more details about
the seeded region growing method see [12].) Thirdly, after
the temporary spot is segmented, we check if it meets the cri-
teria for the real spot. The criteria are the following: if there is
a darker intensity value in the temporary spot than the peak
intensity value, then we are not dealing with the real spot;
we are not dealing with the real spot also if there is more
than one peak kept in the temporary spot. Furthermore, if
the number of pixels in the temporary spot is big enough
(≥5), we check if it has a range of densities which peak cen-
trally; if not, then we are not dealing with the real spot. Now,
we check if it is approximately elliptical and if not, we are
again not dealing with the real spot. The last criterion checks
if the temporary spot size covers almost full region of inter-
est; if so (≥80%), the temporary spot is not treated as the real
spot. Thus, the temporary spot that meets all spot criteria is
accepted as the real spot. Note that all the spot criteria ex-
cept the first, the second, and the last one, which are specific
for our algorithm, are also part of the algorithm in [6], with
which we compare our results. The values are the same in
both implementations. A short description of this approach
is given in the continuation of the paper.

A speedup step is also added using the information about
the actually present intensity values in the region of interest.
Namely, the processing inside the region of interest is done
only for intensity values that are represented in this region.
Furthermore, if the value of step S is bigger than 1 and the
temporary intensity value (threshold) is not present in the
region of interest, then the nearest present and darker inten-
sity value than the temporary threshold is taken as the new
temporary threshold. Of course, we are always looking only
inside the current interval of intensities defined by the step
S. This speedup step is for more objective comparison, also
added to the algorithm in [6], with which we compare our
results.

When all the peaks are processed in this way, we end up
with the segmented image and a linked list of information
about each spot. As we will see in the next section, this in-
formation includes volume of each spot, which is one of the
basic information used in the comparison of results.

The segmented image can now be superimposed over the
original image with different degree of blending in order to
help the user to focus on important parts of the gel for its
subsequent processing (not shown). Blending can be imple-
mented with a slider that blends the images based on the po-
sition of the handle on the slider, where each extreme of the
slider represents one image, original and segmented. In this
way, the segmentation results become even more intuitive for
human perception.

2.2. Evaluation methodology

Unfortunately, we cannot simply count true positives (real
spots), false positives, and so forth, in the real-gel images
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for darkest to lightest intensity value in image
in STEPs do

{
ThresholdImage();
SegmentSpots();
ApplySpotCriteria();
MarkAcceptedSpotsInResultImage();

}

Algorithm 2

since the ground-truth information is not available. More-
over, when it comes to the human factor, such information
is very subjective and varies even if the same person tries
to provide this information at different occasions (e.g., try
to mark the same image after one month and compare the
markings). Furthermore, such counting would not be infor-
mative enough because it does not say anything about the
segmentation accuracy of the individual spots.

To be as objective as possible, we evaluated the efficiency
of LPVC technique in two steps. Since the ground-truth for
real-gel images is not available, we first generated synthetic-
gel images, which are generated based on desired ground-
truth. In this way, the quantitative, numerical comparison
is feasible. Then, we performed the experiments on real-
gel images with human samples from SWISS-2DPAGE (two-
dimensional polyacrylamide gel electrophoresis) database
[14] (http://www.expasy.org/ch2d) in order to qualitatively,
and visually evaluate the results.

Synthetic-gel images were generated by placing spots of a
defined volume, size, and proximity in rows. Firstly, the im-
age with the requested background value was generated (in-
tensity = 235). Secondly, each spot was modeled with a 2D
Gaussian model. Thirdly, Gaussian noise was added to the
image (standard deviation = 2). For details about Gaussians
please refer to [12, 18].

The first test addresses the precision of the technique by
putting identical circular spots in the image (peak intensity
= 30, standard deviation = 6). The second test addresses the
intensity range by continuously lowering the peak height (in-
tensity factor = 0.9). In the third test, we continuously nar-
row the spot width. In terms of the mathematical model em-
ployed, we test the spot standard deviation range (standard
deviation factor= 0.9). The fourth test combines the last two
together. In the last one, we continuously reduce the distance
between spot pairs to simulate the proximity of spots (dis-
tance factor= 0.8). This test is designed to enable assessment
of the algorithm’s ability to accurately split merged spots.

When we perform an experiment, we are basically inter-
ested in the values of two variables: the average error in the
calculated spot volume and the time needed to process the
whole image.

The spot volume is calculated in a standard manner [4]:

Vol=
∑

x,y∈spot

I(x, y), (1)

where x and y are the coordinates of the pixel inside the spot
and I(x, y) is the intensity value at these coordinates in the
image.

The normalized error of the estimated spot volume Vol
in comparison to the actual, ground-truth volume VolGT (in
% of VolGT) for the spot i is given as

Err%,i =
∣∣Voli −VolGT,i

∣∣

VolGT,i
·100. (2)

Furthermore, the average error Avg% (arithmetic mean)
over n spots present in the gel image is calculated. The sec-
ond measure, which is in the results written right beside the
first one (Avg%), is the standard deviation, which reveals how
tightly all the various estimated volumes are clustered around
the average error in the set of data.

On real-gels, such quantitative evaluation is not feasible
but the qualitative evaluation is. Thus, the influence of pa-
rameters on efficiency of the algorithm performance is inves-
tigated.

Finally, all the gels, synthetic and real, were also processed
with a technique called pixel value collection (PVC) [6] for
comparative performance. The pseudocode (see Algorithm
2) reveals the basic idea behind PVC and gives the affinity
between LPVC and PVC.

Note that PVC always processes the whole image, while
LPVC only the region of interest. PVC segments all spots at
once at each level by applying a region labeling algorithm
[6, 12], while LPVC employs a seeded region growing algo-
rithm separately for each spot. Consequently, the merging of
spots is treated differently in both approaches. For more de-
tails about PVC see [6]. Before going to the results, we should
mention also the fact that in [6], a comparison of PVC with
edge detection methodologies for spot detection is done. In
discussion in [6], the authors state that PVC has potential
advantages over known methods. The method is included in
Phoretix 2D software from NonLinear Dynamics Ltd.

For an objective comparison of algorithms, the process-
ing in both cases starts with the same preprocessing step de-
scribed in the beginning of Section 2.1.

2.3. Time complexity

The time complexity of PVC isO(n2), where n gives the width
and height of the processed image. Similarly, the time com-
plexity of LPVC isO(m2), wherem gives the width and height
of the region of interest. Thus, in both cases we deal with
squared time complexity, but since m2 is much smaller in
comparison with n2 (m2 � n2), the actual time needed to
process the input image is much shorter for LPVC.

3. RESULTS AND DISCUSSION

3.1. Synthetic gels

Figure 3 presents the segmentation results of both algorithms
applied to synthetic gels. The first column in Figure 3 gives
the originals with correct ground-truth segmentation super-
imposed (panels (a), (d), (g), (j), (m)). The second column

http://www.expasy.org/ch2d
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3: Computer-generated synthetic gels (first column; (a), (d), (g), (j), (m)) analyzed by proposed LPVC (second column; (b), (e),
(h), (k), (n)) and PVC (third column; (c), (f), (i), (l), (o)). Gels are designed to demonstrate precision (first row; (a)–(c)), intensity range
(second row; (d)–(f)), spot standard deviation range (third row; (g)–(i)), range in general (last two tests together) (fourth row; (j)–(l)), and
effect of proximity of spots (fifth row; (m)–(o)). See Table 1 for quantitative evaluation and text for details.

gives the segmentation results of the proposed LPVC tech-
nique ((b), (e), (h), (k), (n)), while the third one gives results
of the PVC technique ((c), (f), (i), (l), (o)). In all segmen-
tation results, spot areas are extracted from the original im-
age array and transferred to a zero-ground array. The edge
of segmented spots on synthetic gels is emphasized for bet-
ter visualization. Remember that the gels contain the noise
with the standard deviation of 1/3 of the standard deviation
of the biggest spot in the gels. The step through the intensity
range S was set in both algorithms to 1. The second parame-
ter in LPVC, the initial number of nearest neighbors N used
in the segmentation of each spot was also set to 1. In the first
row we test precision ((a)–(c)), in the second intensity range
((d)–(f)), in the third spot standard deviation range ((g)–
(i)), in the fourth we combine the last two ((j)–(l)), and in
the fifth we test the effect of proximity of spots ((m)–(o)).
(See Section 2.2 for details.)

By visually comparing the results, we can see that the seg-
mentation of real spots is very similar, but PVC also finds
nonreal spots at the lighter intensity range. On the other
hand, Table 1 shows a moderate improvement of the LPVC
average error of spot volume results (Avg%) to PVC results

Table 1: Evaluation of the proposed LPVC method on computer-
generated synthetic gels and comparison of results with the PVC
method (see Figure 3): t gives the time in seconds needed to seg-
ment the gel, and Avg% gives the normalized average error of seg-
mented spot volumes in percentage of correct, ground-truth spot
volumes and its standard deviation. Smaller the values, better the
results. See text for details.

Test
LPVC PVC

t[s] Avg% [%] t[s] Avg% [%]

Precision 9.5 0.6 ± 0.4 31.7 1 ± 1.5

Intensity range 3.6 1.5 ± 1 13.7 4.8 ± 6.2

St. dev. range 7 2.6 ± 2.8 13.7 3 ± 2.9

Both ranges 2.7 9 ±11.9 9.2 9.5 ± 11.5

Proximity 3.1 — 32.4 —

and much faster segmentation of LPVC algorithm (t). (See
Section 2.2 for details about the calculation of the average
error.) In the last test (proximity), the average error is not
calculated as it does not make sense: namely, both methods
stop growing spot if more spots get merged. Thus, these spots
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(a) (b)

(c) (d)

Figure 4: Segmentation results of LIVER gel from SWISS-2DPAGE database [14]: the original figure (a) is followed by LPVC result (6.6
seconds) (b), PVC result (17.9 minutes) (c), and the subtraction of PVC result from LPVC result (d). See text for details.

do not reach their true boundaries. (A possible solution is
pointed out in Section 4, where we discuss future work.)

As we will see in the continuation, the speedup achieved
by LPVC is even more obvious when processing real-gels.
Note also that the tests were performed on a single processor
personal computer (Intel Pentium IV 3.0 GHz), in MS Visual
Studio C++ debug mode.

The tests were also performed on gels without noise
to see if the implementations of both algorithms are cor-

rect. In this case, both algorithms achieved optimal results
(Avg% = 0 ± 0%), while the ratio between times t remained
similar.

3.2. Real-gels

Now, let us illustrate the performance of both algorithms
on real-gels. (Remember that the ground-truth information
for real-gels is not available.) We performed the experiments
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(a) (b)

(c) (d)

Figure 5: Segmentation results of U937 gel from SWISS-2DPAGE database [14]: the original figure (a) is followed by LPVC result (6.6
seconds) (b), PVC result (5.4 minutes) (c), and the subtraction of PVC result from LPVC result (d).

on real-gels with human samples from SWISS-2DPAGE
database [14].

Figures 4 and 5 nicely illustrate the behavior of both algo-
rithms. Figure 4 is LIVER gel from the database. It has many
spots and is quite dark. On the other side, Figure 5 is U937

gel, which has much less spots and is much lighter. The pro-
cessing was done with parameters set to: S = 1, N = 8.
In both figures, we first give the original gel (panel a), then
LPVC result (b), PVC result (c), and end with the subtraction
of PVC result from LPVC result (d = b− c). The subtraction
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(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison of results obtained with LPVC for different values of the initial number of nearest neighbors N used in the segmen-
tation of each spot (LIVER gel [14]). The first result was obtained with N = 1 (3.1 seconds) (a), the second with N = 5 (4.7 seconds) (b),
and the third one with N = 8 (6.6 seconds) (c). The second row gives differences between obtained results (d)–(f). See text for details.

shows parts of spots that are present in PVC result and not
in LPVC result. (The subtraction of LPVC result from PVC
result is almost empty (not shown).)

From the results, we can see that the segmentations are
very similar; but when we compare the times needed for the
segmentation, we see that LPVC is much faster: while PVC
for the segmentation of LIVER gel (Figure 4) needs 1073.3
seconds (≈17.9 minutes), LPVC needs only 6.6 seconds. For
the segmentation of U937 gel (Figure 5), PVC needs 325 sec-
onds (≈5.4 minutes) and LPVC needs only 6.6 seconds.

In Figure 4 we hand marked a few spots with squares
and circles to point out a few properties of both segmen-
tation techniques. Let us first focus on squares: based on
spots like these, it is most probable that PVC in general is
more prone to over-segmentation than LPVC. The proper-
ties marked with circles are even more interesting. They de-
note spots that are detected by PVC and not by LPVC. The
reason for this can be found in the different approaches to
segmentation. Namely, in the case of the lower circle, LPVC
stops growing the spot when a decision of nonspot is reached,
while PVC tries again on the next intensity level. In the case of
the upper circle, the segmented spot by PVC actually merges
two spots together in one, while LPVC rejects both because
they are too small to be treated as real spots.

But LPVC can segment the spots like the one inside the
lower circle simply by stopping the growing after two succes-
sive decisions of nonspot are reached. Furthermore, LPVC
can accept the two spots inside the upper circle simply if we
lower the minimal required spot size. Thus, integration of
such options into the software actually gives better expected
results (not shown). Consequently, the time needed to pro-
cess a gel is a bit longer, but LPVC is still much faster than
PVC.

3.3. Influence of parameters

In this section we demonstrate the influence of parameters
on the segmentation process. For the step S through the
intensity range, it is obvious that with bigger S we make a
compromise between the accuracy and speed. With bigger S
we achieve faster execution, but lower accuracy. To illustrate
the achieved speedup for S = 10 on LIVER gel, we give the
times needed to process the gel with both algorithms: LPVC –
3 seconds, PVC – 107.4 seconds (≈1.8 minutes). Thus, LPVC
with S = 1 is still much faster than PVC with S = 10 and, of
course, achieves better accuracy.

Figure 6 shows a comparison of results obtained with
LPVC for different values of the initial number of nearest
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neighbors N used in the segmentation of each spot (S = 1).
(Remember that PVC does not have this parameter.) The
original gel can be seen in Figure 4(a) (LIVER gel). The
first result was obtained with N = 1 (3.1 seconds) (see
Figure 6(a)), the second with N = 5 (4.7 seconds) (panel b)
and the third one with N = 8 (6.6 seconds) (c). The second
row gives differences between obtained results: the difference
between the second result and the first (panel d = |b − a|),
then the difference between the third result and the first
(e = |c− a|), and finally, the difference between the third re-
sult and the second (f = |c− b|). The differences show parts
of spots that are present only in one of the compared results.

The main conclusion that can be drawn from Figure 6 is
that with bigger N , we achieve better segmentation (see hand
marked circles), while the time needed for the segmentation
does not increase substantially. We can also observe that by
using N = 5, we achieve a good compromise between time
and accuracy. But since the execution is fast even with N = 8,
we are not forced to make this compromise.

4. CONCLUDING REMARKS

This paper presents a novel algorithm called local pixel value
collection, a sequence of steps which leads to the spot seg-
mentation of 2DE images. LPVC similarly to PVC, to which
we contrasted LPVC results, builds on morphology idea, but
in contrast to PVC extensively uses local spot information.
Thus, LPVC achieves similar segmentation results as PVC
much faster. In its current format, once segmented, the re-
sultant image is suitable for registration and comparison
processes typical of 2DE image analysis workflows. Whilst
this approach will not resolve all of the issues surrounding
the major bottleneck in 2DE gel-based proteomic analysis, it
gives us a good starting point for future work and the subse-
quent processing. The fact is that its results help the user to
focus on important parts of the gel.

Because of possible proximity of spots to each other, we
have to grow such spots to their real borders (see the last row,
panels (m)–(o) in Figure 3). This could, for instance, be ad-
dressed by parametric spot modeling with Gaussian, diffu-
sion or mixture spot model [18, 19]. This task is the first one
to be addressed in our future work.

LPVC approach will be included as one of the options in
our 2D gel analysis software that we are developing.
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