

University of Ljubljana

Faculty of Computer and Information Science

Computer Vision Laboratory

Mosaic-Based Panoramic Depth Imaging with a Single Standard Camera

Peter Peer, Franc Solina

IEEE Workshop on Stereo and Multi-Baseline Vision, 2001 (CVPR)

Overview
1. Generation of panoramic views
2. Geometry of the system
3. Epipolar geometry
4. Stereo reconstruction
5. Analysis
6. Summary

- Setoff of the camera's optical center
- Multiperspective panoramic views

 \mathbf{L}

R

• Setoff of the camera's optical center

• Multiperspective panoramic views

R

- Setoff of the camera's optical center
- Multiperspective panoramic views #1 Camera motion

- Setoff of the camera's optical center
- Multiperspective panoramic views #2 Generation

- Setoff of the camera's optical center
- Multiperspective panoramic views #3 Result of the acquisition

 $2\varphi = 29.9625^{\circ}$

 $2 arphi = 3.6125^{\circ}$...and the stereo reconstruction is possible!

• Multiperspective panoramic views #4 Geometry of the system

0,0

0,0

• Multiperspective panoramic views #4 Geometry of the system

• Multiperspective panoramic views #5 Viewing cylinder

• Multiperspective panoramic views #5 Viewing cylinder

• Multiperspective panoramic views #5 Viewing cylinder

15

 \mathbf{L}

• Time complexity of creating a panoramic view

R

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line

22

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line

L

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line

 $2\theta_{\min} = \theta_0 \implies x + \frac{2\theta_{\min}}{\theta_0} = \underline{x+1}$

R

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line

$$l = \frac{r \cdot \sin \varphi}{\sin(\varphi - \theta)}$$

$$2\theta_{\min} = \theta_0 \implies x + \frac{\theta_0}{\theta_0} = x + \frac{1}{\theta_0}$$

$$\theta_{\max} = n \cdot \frac{\theta_0}{2} \quad (n = \varphi \operatorname{div} \frac{\theta_0}{2} \And \varphi \operatorname{mod} \frac{\theta_0}{2} \neq 0) \implies x + \frac{2\theta_{\max}}{\theta_0} = x + \frac{n}{\theta_0}$$

 $2\theta_{\min}$

0)

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line

$$\begin{aligned} 2\theta_{\min} &= \theta_0 \implies x + \frac{2\theta_{\min}}{\theta_0} = \underline{x+1} \\ \theta_{\max} &= n \cdot \frac{\theta_0}{2} \quad (n = \varphi \operatorname{div} \frac{\theta_0}{2} \And \varphi \operatorname{mod} \frac{\theta_0}{2} \neq 0) \implies x + \frac{2\theta_{\max}}{\theta_0} = \underline{x+n} \end{aligned}$$

1501 pixels $\implies n = 149$ pixels, $2\varphi = 29,9625^{\circ}$ / n = 18 pixels, $2\varphi = 3,6125^{\circ}$

 $l = \frac{r \cdot \sin \varphi}{\sin(\varphi - t)}$

26

 \mathbf{L}

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ

 $\theta = \underline{dx} \cdot \frac{\theta_0}{2}$

R

29

 \mathbf{O}

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ

 $l = \frac{r \cdot \sin \varphi}{\sin(\varphi - \theta)}$

 $\theta = \underline{dx} \cdot \frac{\theta_0}{2}$

 \mathbf{O}

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ

 $l = \frac{r \cdot \sin \varphi}{\sin(\varphi - \theta)}$

 $\theta = \underline{dx} \cdot \frac{\theta_0}{2}$

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ
- Definition of the maximal reliable depth value

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ
- Definition of the maximal reliable depth value

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ
- Definition of the maximal reliable depth value

define the upper boundary of allowed error size (Δl)

- Time complexity of creating a panoramic view
- Constraining the search space on the epipolar line
- Meaning of the one-pixel error in estimation of the angle θ
- Definition of the maximal reliable depth value

define the upper boundary of allowed error size (Δl)

 \Rightarrow reconstruction of small spaces

a) Left eye panorama ($2\varphi = 29.9625^{\circ}, r = 30 \text{ cm}$)

a) Left eye panorama ($2\varphi = 29.9625^{\circ}$, r = 30 cm)

a) Left eye panorama ($2\varphi = 29.9625^{\circ}$, r = 30 cm)

c) Information about the confidence in the estimated depth

a) Left eye panorama ($2\varphi = 29.9625^{\circ}$, r = 30 cm)

0)

b) Dense depth image / using back-correlation / $t \doteq 6, 7$ hours

d) Dense depth image after the weighting / no back-correlation / $t \doteq 3,35$ h

c) Information about the confidence in the estimated depth

a) Left eye panorama ($2\varphi = 29.9625^{\circ}$, r = 30 cm)

0)

d) Dense depth image after the weighting / no back-correlation / $t \doteq 3,35$ h

[Together with the Sobel filter]

IEEE Workshop on Stereo and Multi-Baseline Vision, 2001 (CVPR)

Q.

0

Experimental results #3 — The error function on the manually measured points

									1
1	234	5	6	7	8	9 1	0 11	12	13
				1					
	feature marked in /		actual	estimated depth l [cm]			difference $l - d$ [cm (% of d)]		
			distance	for $2\varphi =$			for $2\varphi =$		
	the fig.	with	d [cm]	3.6125°	29.	.9625°	3.6125°	29.9625°	
	1	17	111.5	89.4		109	-22.1 (-19.8%)	-2.5 (-2.2%)	
	L 2		95.5	76.7	æ	39.3	-18.8 (-19.6%)	-6.2 (-6.5%)	R
	3	4	64	53.8		59.6	-10.2 (-15.9%)	-4.4 (-6.9%)	
	4		83.5	76.7	7	78.3	-6.8 (-8.1%)	-5.2 (-6.2%)	
	5		92	89.4	E	39.3	-2.6 (-2.8%)	-2.7 (-2.9%)	
	6		<mark>86</mark> .5	76.7		32.7	-9.8 (-11.3%)	-3.8 (-4.4%)	
	7		153	133.4	1	59.8	-19.6 (-12.8%)	6.8 (4.4%)	
	8		130.5	133.4	1	35.5	2.9 (2.2%)	5 (3.8%)	
	9		88	76.7	6	37.6	-11.3(-12.8%)	-0.4 (-0.5%)	
	10		92	89.4	6	39.3	-2.6 (-2.8%)	-2.7 (-2.9%)	
	11		234.5	176.9	2	13.5	-57.6 (-24.6%)	-21 (-9%)	
	12		198	176.9	1	79.1	-21.1 (-10.7%)	-18.9 (-9.5%)	
	13		177	176.9	1	86.7	-0.1 (-0.1%)	9.7 (5.5%)	
)

Summary

- We are doing a stereo reconstruction with only one standard camera.
- Problem: real time execution of the mosaicing process.
- Epipolar lines are image rows.
- The search space on the epipolar line can be effectively constraint.
- The confidence in the estimated depth is changing with the slope of the curve *l* (depth).
- The reconstruction time of dense depth images is not acceptable (in most cases).
- The results are very promissing but they can get better.
- Reconstruction of small spaces constraint: α

R.

Future work

- Solve mentioned problems &
 - identify the size of the systematical error,
 - address the precision of vertical reconstruction,
 - use calibration procedure,
 - use sub-pixel accuracy procedure and
 - enlarge the vertical field of view.
- The goal: mobile robot application!

R

 \bigcirc

Qr

Appendix #1 — Vertical motion parallax effect

[Huang]

Appendix #2 — Using wider stripes

