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Abstract

In this chapter we present a stereo panoramic depth imaging system, which builds depth
panoramas from multiperspective panoramas while using only one standard camera.

The basic system is mosaic-based, which means that we use a single standard rotating
camera and assemble the captured images in a multiperspective panoramic image. Due to
a setoff of the camera’s optical center from the rotational center of the system, we are able
to capture the motion parallax effect, which enables the stereo reconstruction.

The system has been comprehensively analysed. The analyses include the study of influ-
ence of different system parameters on the reconstruction accuracy, constraining the search
space on the epipolar line, meaning of error in estimation of corresponding point, definition
of the maximal reliable depth value, contribution of the vertical reconstruction and influence
of using different cameras. They are substantiated with a number of experiments, including
experiments addressing the baseline, the repeatability of results in different rooms, by using
different cameras, influence of lens distortion presence on the reconstruction accuracy and
evaluation of different models for estimation of system parameters. The analyses and the
experiments revealed a number of interesting properties of the system.

According to the basic system accuracy we definitely can use the system for autonomous
robot localization and navigation tasks.

Keywords: Computer vision, Stereo vision, Reconstruction, Depth image, Multiperspec-
tive panoramic image, Mosaicing, Motion parallax effect, Standard camera, Depth sensor
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1.1 Introduction

1.1.1 Motivation

A computer vision is a special kind of scientific challenge as we are all users of our own
vision systems. Our vision is definitely a source of the major part of information we acquire
and process each second. A stereo vision is perhaps even greater challenge, since our own
vision system is a stereo one and it performs a complex task, which supplies us with 3D
information on our surroundings in a very effective way.

Making machines see is a difficult problem. On one side we have psychological aspects
of human visual perception, which try to explain how the visual information is processed in
the human brain. On the other side we have technical solutions, which try to imitate human
vision. Normally, it all starts with capturing digital images that store the basic information
about the scene in a similar way that humans see. But this information represents only the
beginning of a difficult process. By itself it does not reveal the information about the objects
on the scene, their color, distances etc. to the machine. For humans, visual recognition is
an easy task, but the human brain processing methods are still a mistery to us.

One part of the human visual perception is estimating the distances to the objects on
the scene. This information is also needed by robots if we want them to be completely
autonomous.

In this chapter we present a stereo panoramic depth imaging system.
Standard cameras have a limited field of view, which is usually smaller than the human

field of view. Because of that people have always tried to generate images with a wider field
of view, up to full 360 degree panorama [16].

One way to build panoramic images is by taking one column out of a captured image
and mosaicing the columns. Such panoramic images are called multiperspective panoramic
images. The crucial property of two or more multiperspective panoramic images is that
they capture the information about the motion parallax effect, since the columns forming
the panoramic images are captured from different perspectives.

Under the term stereo reconstruction we understand the generation of depth images
from two or more captured images. A depth image is an image that stores distances to
points on the scene. The stereo reconstruction procedure is based on relations between
points and lines on the scene and images of the scene. If we want to get a linear solution
of the reconstruction procedure then the images can interact with the procedure in pairs,
triplets or quadruplets, and relations are named accordingly to the number of images as
epipolar constraint, trifocal constraint or quadrifocal constraint [22]. We want the images
to have the property that the same points and lines are visible in all images of the scene,
which facilitate stereo reconstruction. This is the property of panoramic cameras and it
presents our fundamental motivation. We do the stereo reconstruction from two symmetric
multiperspective panoramic images.

In this chapter we address only the issue how to enlarge the horizontal field of view of
images. The vertical field of view of panoramic images can be enlarged by using wide angle
camera lenses [44], by using mirrors [25, 32] or by moving the camera also in the vertical
direction and not only in the horizontal direction [16].

If we tried to build two panoramic images simultaneously by using two standard cameras
which are mounted on two rotational robotic arms, we would have problems with non-
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static scenes. Clearly, one camera would capture the motion of the other camera. So we
have decided to use one camera only. Accordingly, in this chapter we present a mosaic-
based panoramic depth imaging system using only one standard camera and analyze its
performance to see if it can be used for robot localization and navigation in a room.

1.1.2 Basics about the system

Figure 1.1: Hardware part of our system.

In Fig. 1.1 the hardware part of our system can be seen: a color camera is mounted on a
rotational robotic arm so that the optical center of the camera is offset from the vertical axis
of rotation. The camera is looking outward from the system’s rotational center. Panoramic
images are generated by repeatedly shifting the rotational arm by an angle which corresponds
to a single pixel column of the captured image. By assembling the center columns of these
images, we get a mosaic panoramic image. One of the drawbacks of mosaic-based panoramic
imaging is that dynamic scenes are not well captured.

It can be shown that the epipolar geometry is very simple if we perform the reconstruction
based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo
panoramic images when we take symmetric columns on the left and on the right hand side
from the captured image center column. These columns are assembled in a mosaic stereo
pair. The column from the left hand side of the captured image is mosaiced in the right
eye panoramic image and the column from the right hand side of the captured image is
mosaiced in the left eye panoramic image.

1.1.3 Structure of the chapter

In the next section we compare different panoramic cameras with emphasis on mosaicing.
In Sec. 1.3 we give an overview of related work and briefly present the contribution of
our work towards the discussed subject. Sec. 1.4 describes the geometry of our system,
Sec. 1.5 is devoted to the epipolar geometry and Sec. 1.6 describes the procedure of stereo
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reconstruction. The focus of this chapter is on the analysis of system capabilities, given in
Sec. 1.7. In Sec. 1.8 we present experimental results. In the very end of this chapter we
summarize the main conclusions.

1.2 Panoramic cameras

Every panoramic camera belongs to one of three main groups of panoramic cameras: cata-
dioptric cameras, dioptric cameras and cameras with moving parts. The basic property of
a catadioptric camera is that it consists of a mirror (or mirrors [18]) and a camera. The
camera captures the image which is reflected from the mirror. A dioptric camera is using
a special type of lens, e.g. fish-eye lens, which increases the size of the camera’s field of
view. A panoramic image can also be generated by moving the camera along some path
and mosaicing together the images captured in different locations on the path.

Type of Number of Resolution of Real References
panoramic camera images panoramic images time

catadioptric 1 low yes [15, 18, 25, 28, 29, 33, 52]
camera

dioptric 1 low yes [3, 7]
camera

moving a lot high no [1, 8, 9, 10, 12, 13, 14, 16]
parts [17, 19, 20, 21, 23, 25, 26]

[27, 32, 33, 35, 36, 39, 43]
[44]

Table 1.1: Comparison of different types of panoramic cameras with respect to the number
of standard images needed to build a panoramic image, the resolution of panoramic images
and the capability of building a panoramic image in real time.

The comparison of different types of panoramic cameras is shown in Tab. 1.1.
All types of panoramic cameras enable 3D reconstruction. The camera has a single

viewpoint or a projection center if all light rays forming the image intersect in a single
point. Cameras with this property are also called central cameras. Rays forming a non-
central image do not pass through a single point, but rather intersect a line [10], a conic
[25, 39, 40, 49], do not intersect at all [46] or are bound by other constraints suiting the
practical or the theoretical demands [13, 17].

Mosaic-based procedures can be marked as non-central (we do not deal with a single
center of projection), they do not execute in real time, but they give high resolution re-
sults. High resolution images enable effective depth reconstruction, since by increasing the
resolution the number of possible depth estimates is also increasing. Thus mosaicing is not
appropriate for capturing dynamic scenes and consequently not for reconstruction of dy-
namic scenes. The systems described in [1, 16] are exceptions because the light rays forming
the mosaic panoramic image intersect in the rotational center of the system. These two
systems are central systems. The system presented in [30, 41, 42] could also be treated as
mosaic-based procedure, though its concept for generating panoramic depth images is very
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different from our concept.
Dioptric panoramic cameras with wide angle lenses can be marked as non-central [29],

they build a panoramic image in real time and they give low resolution results. Cameras
with wide angle lenses are appropriate for fast capturing of panoramic images and processing
of captured images, e.g. for detection of obstacles or for localization of a mobile robot, but
are less appropriate for reconstruction. Please note that we are talking about panoramic
cameras here. Generally speaking, dioptric cameras can be central.

Only some of the catadioptric cameras have a single viewpoint. Cameras with a mirror
(or mirrors) work in real time and they give low resolution results. Only two mirror shapes,
namely hyperbolic and parabolic mirrors, can be used to construct a central catadioptric
panoramic camera [29, 52]. Such panoramic cameras are appropriate for low resolution
reconstruction of dynamic scenes and for motion estimation. It is also true that only for
panoramic systems with hyperbolic and parabolic mirrors the epipolar geometry can be
simply generalized [29, 52].

Since dioptric and catadioptric cameras give low resolution results, they are more ap-
propriate for use with view-based systems [59] and less for use with reconstruction systems.

Of course, combinations of different cameras exist: e.g. a combination of the mosaicing
camera and the catadioptric camera [25, 32] or a combination of the mosaicing camera and
the wide angle camera [44]. Their main purpose is to enlarge the camera’s vertical field of
view.

1.3 Related work

We can generate panoramic images either with the help of special panoramic cameras or
with the help of a standard camera and with mosaicing standard images into panoramic
images. If we want to generate mosaic 360 degree panoramic images, we have to move the
camera on a closed path, which is in most cases a circle.

One of the best known commercial packages for creating mosaic panoramic images is
QTVR (QuickTime Virtual Reality). It works on the principle of sewing together a number
of standard images captured while rotating the camera [8]. Peleg et al. [27] introduced the
method for creation of mosaiced panoramic images from standard images captured with a
handheld video camera. A similar method was suggested by Szeliski and Shum [12], which
also does not strictly constraint the camera path but assumes that a great motion parallax
effect is not present. All methods mentioned so far are used only for visualization purposes
since the authors did not try to reconstruct the scene.

The crossed-slits (X-slits) projection [53, 56, 61] uses a similar mosaicing technique with
one important difference: the mosaiced strips are sampled from varying positions in the
captured images. This makes the generation of virtual walkthroughs possible, i.e. we are
again dealing with the visualization with the help of image-based rendering or new view
synthesis.

Ishiguro et al. [1] suggested a method which enables scene reconstruction. They used
a standard camera rotating on a circular path. The scene is reconstructed by means of
mosaicing panoramic images together from the central column of the captured images and
moving the system to another location where the task of mosaicing is repeated. The two
created panoramic images are then used as the input to a stereo reconstruction procedure.
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The depth of an object was first estimated using projections in two images captured in
different locations of the camera on the camera path. But since their primary goal was to
create a global map of the room, they preferred to move the system attached to the robot
about the room. Clearly, by moving the robot to another location and producing the second
panoramic image of a stereo pair in this location rather than producing a stereo pair in a
single location, they enlarged the disparity of the system. But this decision also has a few
drawbacks: we cannot estimate the depth for all points on the scene, the time of capturing
a stereo pair is longer and we have to search for the corresponding points on the sinusoidal
epipolar curves. The depth was then estimated from two panoramic images taken at two
different locations of the robot in the room.

Peleg and Ben-Ezra [19, 26] introduced a method for creation of stereo panoramic images
without actually computing the 3D structure — the depth effect is created in the viewer’s
brain.

In [20], Shum and Szeliski described two methods used for creation of panoramic depth
images, which use standard procedures for stereo reconstruction. Both methods are based
on moving the camera on a circular path. Panoramic images are built by taking one column
out of a captured image and mosaicing the columns. The authors call such panoramic images
multiperspective panoramic images. The crucial property of two or more multiperspective
panoramic images is that they capture the information about the motion parallax effect,
since the columns forming the panoramic images are captured from different perspectives.
The authors use such panoramic images as the input in a stereo reconstruction procedure.
In [21], Shum et al. proposed a non-central camera called an omnivergent sensor in order
to reconstruct scenes with minimal reconstruction error. This sensor is equivalent to the
sensor presented in this chapter.

However, multiperspective panoramic images are not something new to the vision com-
munity [20]: they are a special case of multiperspective panoramic images for cel animation
[13], a special case of crossed-slits (X-slits) projection [53, 56, 61], they are very similar to
images generated by a procedure called multiple-center-of-projection [17], by the manifold
projection procedure [27] and by the circular projection procedure [19, 26]. The principle of
constructing multiperspective panoramic images is also very similar to the linear pushbroom
camera principle for creating panoramic images [10].

The papers closest to our work [1, 20, 21] seem to lack two things: a comprehensive
analysis of 1) the system’s capabilities and 2) the corresponding points search using the
epipolar constraint. Therefore, the focus of this chapter is on these two issues. While in
[1] the authors searched for corresponding points by tracking the feature from the column
building the first panorama to the column building the second panorama, the authors in [20]
used an upgraded plane sweep stereo procedure. A key idea behind the approach in [21] is
that it enables optimizing the input to traditional computer vision algorithms for searching
the correspondences in order to produce superior results.

Further details about the related work are revealed in in the following sections, where
we discuss specifics of our system.
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1.4 System geometry

Let us begin this section with description of how the stereo panoramic pair is generated.
From the captured images on the camera’s circular path we always take only two columns,
which are equally distant from the middle column. We assume that the middle column
that we are referring to in this chapter, is the middle column of the captured image, if
not mentioned otherwise. The column on the right hand side of the captured image is
then mosaiced in the left eye panoramic image and the column on the left hand side of
the captured image is mosaiced in the right eye panoramic image. So, we are building
each panoramic image from just a single pixel column of the captured image. Thus, we get
a symmetric pair of stereo panoramic images, which yields a reconstruction with optimal
characteristics (simple epipolar geometry and minimal reconstruction error) [21].
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Figure 1.2: Geometry of our system for constructing multiperspective panoramic images.
Note that a ground-plan is presented. The optical axis of the camera is kept horizontal.

The geometry of our system for creating multiperspective panoramic images is shown
in Fig. 1.2. The panoramic images are then used as the input to create panoramic depth
images. Point C denotes the system’s rotational center around which the camera is rotated.
The offset of the camera’s optical center from the rotational center C is denoted as r,
describing the radius of the circular path of the camera. The camera is looking outward
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from the rotational center. The optical center of the camera is marked with O. The column
of pixels that is sewn in the panoramic image contains the projection of point P on the
scene. The distance from point P to point C is the depth l, while the distance from point
P to point O is denoted by d. Further, θ is the angle between the line defined by points
C and O and the line defined by points C and P . In the panoramic image the horizontal
axis represents the path of the camera. The axis is spanned by µ and defined by point C, a
starting point O0, where we start capturing the panoramic image, and the current point O.
ϕ denotes the angle between the line defined by point O and the middle column of pixels
of the image captured by the physical camera looking outward from the rotational center
(the latter column contains the projection of the point Q), and the line defined by point O
and the column of pixels that will be mosaiced into the panoramic image (the latter column
contains the projection of the point P ). Angle ϕ can be thought of as a reduction of the
camera’s horizontal view angle α.

The geometry of capturing multiperspective panoramic images can be described with a
pair of parameters (r, ϕ). By increasing (decreasing) each of them, we increase (decrease)
the baseline (2r0 [39], r0 = r · sinϕ (Fig. 1.2)) of our stereo system.

Wei et al. [43] proposed an approach to solve the parameter (r, ϕ) determination problem
for a symmetric stereo panoramic camera. The image acquisition parameters (r, ϕ) are
calculated based on (subjectively) given parameters: the nearest and the furthest distances
of the region of interest, the height of the region of interest and the width of the angular
disparity interval. They conclude that neither the parameter r nor ϕ can satisfactorily
match application requirements on their own and report that a general study of relations
among parameters is in progress as they have discovered certain exceptions in experiments
that require further researches.

virtual
camera

physical camera
(image plane)

C

O

viewing cylinder

light rays

important
column

Figure 1.3: All the light rays forming the panoramic image are tangent to the viewing
cylinder.
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2ϕ = 29.9625◦

2ϕ = 3.6125◦

Figure 1.4: Two symmetric pairs of panoramic images generated using different values of
the angle ϕ. In Sec. 1.7.1 we explain where these values for the angle ϕ come from. Each
symmetric pair of panoramic images comprises the motion parallax effect. This fact enables
the stereo reconstruction.

The system in Fig. 1.2 is obviously a non-central since the light rays forming the
panoramic image do not intersect in one point called the viewpoint, but instead are tangent
(ϕ �= 0) to a cylinder with radius r0, called the viewing cylinder (Fig. 1.3). Thus, we are
dealing with panoramic images formed by a projection from a number of viewpoints. This
means that a captured point on the scene is seen in the panoramic image from one viewpoint
only. This is why the panoramic images captured in this way are called multiperspective
panoramic images.

For stereo reconstruction we need two images. If we look at only one circle on the viewing
cylinder (Fig. 1.2) then we can conclude that our system is equivalent to a system with two
cameras. In our case, two virtual cameras are rotating on a circular path, i.e. a viewing
circle, with radius r0. The optical axis of a virtual camera is always tangent to the viewing
circle. The panoramic image is generated from only one pixel from the middle column of
each image captured by a virtual camera. This pixel is determined by the light ray which
describes the projection of a scene point on the physical camera image plane. If we observe
a point on the scene P , we see that both virtual cameras, which see this point, form a
traditional stereo system of converging cameras.

Obviously, a symmetric pair of panoramic images used in the stereo reconstruction pro-
cess could be captured also with a bunch of cameras rotating on a circular path with radius
r0, where the optical axis of each camera is tangent to the circular path (Fig. 1.3).

Two images differing in the angle of rotation of the physical camera setup (for example,
two image planes marked in Fig. 1.2) are used to simulate a bunch of virtual cameras on the
viewing cylinder. Each column of the panoramic image is obtained from a different position
of the physical camera on a circular path. In Fig. 1.4 we present two symmetric pairs of
panoramic images.

To automatically register captured images directly from the knowledge of the camera’s
viewing direction, the camera lens’ horizontal view angle α and vertical view angle β are
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required. If we know this information, we can calculate the resolution of one angular degree,
i.e. we can calculate how many columns and rows are within an angle of one degree. The
horizontal view angle is especially important in our case, since we move the rotational
arm only around it’s vertical axis. To calculate these two parameters, we use an algorithm
described in [16]. It is designed to work with cameras whose zoom settings and other internal
camera parameters are unknown. The algorithm is based on the mechanical accuracy of the
rotational arm. The basic step of our rotational arm corresponds to an angle of 0.0514285 ◦.
In general, this means that if we tried to turn the rotational arm for 360 degrees, we
would perform 7000 steps. Unfortunately, the rotational arm that we use cannot turn for
360 degrees around it’s vertical axis. The basic idea of the algorithm is to calculate the
translation dx (in pixels) between two images, while the camera is rotated for a known
angle dγ in the horizontal direction. Since we know the exact angle by which we move the
camera, we can calculate the horizontal view angle of the camera:

α =
W

dx
· dγ, (1.1)

where W is the width of the captured image in pixels.
The major drawback of this method is that it relies on the accuracy of the rotational

arm. Because of that we rechecked the values of the view angles by calibrating the camera
using a static camera and a checkboard pattern [11, 31, 54]. The input into the calibration
procedure is a set of images with varying position of the pattern in each image. The results
obtained were very similar, though the second method should be more reliable as it reveals
more information about the camera model and also uses sub-pixel accuracy procedure. The
latter calibration estimates the focal length, the principal point, the skew coefficient and
distortions, to name just the most important parameters for us. It also reveals the errors
of all estimated parameters. If we assume that the principal point is in the middle of the
captured image, we can calculate the horizontal view angle of the camera from the estimated
parameters:

α = 2 arctan
W/2
f
, (1.2)

where f is the estimated focal length.
Distortion parameters are also important, because we also investigate the influence of

distortion on the system’s results.
In any case, now that we know the value of α, we can calculate the resolution of one

angular degree x0:

x0 =
W

α
.

This equation enables us to calculate the width of the stripe Ws that will be mosaiced in
the panoramic image when the rotational arm moves for an angle θ0:

Ws = x0 · θ0. (1.3)

From the above equation we can also calculate the angle of the rotational arm for which we
have to move the rotational arm if the stripe is only one pixel column wide.

We used three different cameras in the experiments:
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• a camera with the horizontal view angle α = 34◦ and the vertical view angle β = 25◦,

• a camera with the horizontal view angle α = 39.72◦ and the vertical view angle
β = 30.54◦,

• a camera with the horizontal view angle α = 16.53◦ and the vertical view angle
β = 12.55◦.

In the process of the panoramic image construction we did not vary these two parameters.
From here on, the first camera is used in the calculations and the experiments, if not stated
differently.

1.5 Epipolar geometry

Searching for the corresponding points in two images is a difficult problem. Generally
speaking, the corresponding point can be anywhere in the second image. That is why we
would like to constrain the search space as much as possible. Using the epipolar constraint
we reduce the search space from 2D to 1D, i.e. to an epipolar line [4]. In Sec. 1.7.3 we prove
that in our system we can effectively reduce the search space even on the epipolar line.

In this section we will only illustrate the procedure of the proof that the epipolar lines
of the symmetric pair of panoramic images are image rows. This statement is true for our
system geometry. For proof see [20, 23, 35, 51].

The proof in [23] is based on radius r0 of the viewing cylinder (Figs. 1.2 and 1.3). We
can express r0 in the terms of known parameters r and ϕ as:

r0 = r · sinϕ .

We carry out the proof in three steps: first, we have to execute the projection equation
for the line camera, then we have to write the projection equation for a multiperspective
panoramic image and, in the final step, we prove the property of the epipolar lines for the case
of a symmetric pair of panoramic images. In the first step, we are interested in how the point
on the scene is projected to the camera’s image plane [4], which is of dimension n× 1 pixels
in our case, since we are dealing with a line camera. In the second step, we have to write the
relation between different notations of a point on the scene and the projection of this point
on the panoramic image: notation of the scene point in Euclidean coordinates of the world
coordinate system and in cylindric coordinates of the world coordinate system, notation of
the projected point in angular coordinates of the (2D) panoramic image coordinate system
and in pixel coordinates of the (2D) panoramic image coordinate system. When we know
the relations between the above-mentioned coordinate systems, we can write the equation
for projection of scene points on the cylindric image plane of the panorama. Based on the
angular coordinates of the panoramic image coordinate system property, we can in the third
step show that the epipolar lines of the symmetric pair of panoramic images are actually
rows of panoramic images. The basic idea for the last step of the proof is as follows: If we
are given an image point in one panoramic image, we can express the optical ray defined
by a given point and the optical center of the camera in 3D world coordinate system. If
we project this optical ray described in world coordinate system on the second panoramic
image, we get an epipolar line corresponding to the given image point in the first panoramic
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image. After introducing proper relations valid for the symmetric case into the obtained
equation, our hypothesis is confirmed.

The same result can be found in [20], where the authors proved the property of symmet-
ric pair of panoramic images by directly investigating the presence of the vertical motion
parallax effect in the panoramic images captured from the same rotational center. The
generalization to the non-symmetric case for the camera looking inward and outward can
be found in [51]. Even a more general case, in some respect, where the panoramic images
can be captured from different rotational centers, is discussed in [35].

It was shown that the notion of the epipolar geometry, well known for both central per-
spective cameras [4, 22, 34] and central catadioptric cameras [28, 29, 52], can be generalized
to some non-central cameras [37, 40, 46, 49]. The epipolar surfaces extend from planes to
double-ruled quadrics: planes, rotational hyperboloids and hyperbolic paraboloids.

1.6 Stereo reconstruction

Let us go back to Fig. 1.2. Using trigonometric relations evident from the sketch, we can
write the equation for the depth estimation l of a point P on the scene. By the basic law of
sines for triangles, we have:

r

sin(ϕ− θ) =
d

sin θ
=

l

sin(180◦ − ϕ)
. (1.4)

From this equation we can express the equation for depth estimation l as:

l =
r · sin(180◦ − ϕ)

sin(ϕ− θ) =
r · sinϕ

sin(ϕ− θ) . (1.5)

Eq. (1.5) implies that we can estimate depth l only if we know three parameters: r, ϕ
and θ. r is given. Angle ϕ can be calculated on the basis of the camera’s horizontal view
angle α (Eq. (1.1)) as:

2ϕ =
α

W
·W2ϕ, (1.6)

where W is the width of the captured image in pixels and W2ϕ is the width of the captured
image between columns forming the symmetric pair of panoramic images, given also in
pixels. To calculate the angle θ, we have to find corresponding points on panoramic images.
Our system works by moving the camera for the angle corresponding to one pixel column
of the captured image. If we denote this angle by θ0, we can express the angle θ as:

θ = dx · θ0
2
, (1.7)

where dx is the absolute value of difference between the corresponding points image coor-
dinates on the horizontal axis x of the panoramic images.

Note that Eg. (1.5) does not contain the focal length f explicitly, but since the relation-
ships between α and f on one side (Eq. (1.2)) and α and ϕ on the other side (Eq. (1.6))
exist, ϕ also depends upon f (the two models for estimating angle ϕ (Eqs. (1.6) and (1.8))
are discussed in Sec. 1.7.2):
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ϕ = arctan
W2ϕ/2
f

. (1.8)

Eq. (1.5) estimates the distance l to the perpendicular projection of the scene point P
on the plane defined by the camera’s circular (planar) path. The projection of the scene
point P is marked with P ′ in Fig. 1.5. Since this estimation is an approximation of the
real l, we have to improve the estimation by addressing the vertical reconstruction, i.e. by
incorporating the vertical view angle β into Eq. (1.5).

Let us here adopt the following notation to introduce the influence of β on estimation
of l: if a variable l or d depends on α only, we mark that as l(α) and d(α) (until now, these
variables were marked simply l and d), but if a variable l or d depends on α and β, we mark
that as l(α, β) and d(α, β). According to Fig. 1.5 the distance to the point P on the scene
can be calculated as:

l(α, β) =
√
l(α)2 + Y 2 =

√
l(α)2 + (l(α) · tanω2)2.

Because the value of ω2 is unknown, we have to express it in terms of known parameters.
We can do that, while Y can also be written as:

Y = d(α) · tanω1.

We can calculate ω1 similarly as we calculated ϕ (Eqs. (1.6) and (1.8)):
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2ω1 =
β

H
·H2ω1 or ω1 = arctan

H2ω1/2
f

,

where H is the height of the captured image in pixels and H2ω1 is the height of the captured
image between the image row that contains the projection of the scene point P and the
symmetric row on the other side from the middle row, given also in pixels. And d(α) follows
from Eq. (1.4):

d(α) =
l(α) · sin θ

sinϕ
.

Now, we can write the equation for l(α, β) as:

l(α, β) =

√
l(α)2 +

(
l(α) · sin θ

sinϕ
· tanω1

)2

. (1.9)

From now on, l = l(α) and when l(α, β) is used, this is explicitly stated.
The influence of addressing the vertical reconstruction on the reconstruction accuracy is

discussed in Secs. 1.7.6 and 1.8.4.
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1.7 Analysis of the system’s capabilities

1.7.1 Time complexity of panoramic image creation

The biggest disadvantage of our system is that it cannot produce panoramic images in real
time since we create them stepwise by rotating the camera for a very small angle. Because
of mechanical vibrations of the system, we also have to ensure to capture an image when
the system is completely still. The time that the system needs to create a panoramic image
is much too long to allow it work in real time.

In a single circle around the system’s vertical axis our system constructs 11 panoramic
images: 5 symmetric pairs and a panoramic image from the middle columns of the captured
images. It captures and saves 1501 images with resolution of 160× 120 pixels, where radius
is r = 30 cm and the shift angle is θ0 = 0.205714◦. We have choosen the resolution of
160× 120 pixels because it represents a good compromise between overall time complexity
of the system and its accuracy, as it is shown in the following sections. We cannot capture
360/θ0 images because of the limitation of the rotational arm. Namely, the rotational arm
cannot turn for 360 degrees around its vertical axis.

The middle column of the captured image was in our case the 80th column. The distances
between the columns building up symmetric pairs of panoramic images were 141, 125, 89, 53
and 17 columns. These numbers include two columns building up each pair. In consequence
the values of the angle 2ϕ (Eq. (1.6)) are 29.9625◦ (141 columns), 26.5625◦ (125 columns),
18.9125◦ (89 columns), 11.2625◦ (53 columns) and 3.6125◦ (17 columns), respectively. (Here
we used the camera with the horizontal view angle α = 34◦.)

The acquisition process takes little over 15 minutes on a 350 MHz Intel PII PC. The
steps of the acquisition process are as follows:

1. Move the rotational arm to its initial position.

2. Capture and save the image.

3. Contribute image parts to the panoramic images.

4. Move the arm to the new position.

5. Check in the loop if the arm is already in the new position. The communication
between the program and the arm is written in the file for debugging purposes. After
the program exits the loop, it waits for 300 ms in order to stabilize the arm in the
new position.

6. Repeat steps 2 to 5 until the last image is captured.

7. When the last image has been captured, contribute image parts to the panoramic
images and save them.

We could achieve faster execution since our code is not optimized. For example, we did not
optimize the waiting time (300 ms) after the arm is in the new position. No computations
are done in parallel.
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1.7.2 Influence of parameters r, ϕ and θ0 on the reconstruction
accuracy

In order to estimate the depth as precisely as possible, the parameters involved in the
calculation also have to be estimated precisely. In this section we reveal the methods used
for estimation of parameters r, ϕ and θ0.
θ0 denotes the angle corresponding to one pixel column of the captured image, for which

we rotate the camera. It can be calculated from Eq. (1.3):

θ0 =
α

W
. (1.10)

For α = 34◦ and W=160 pixels, we get θ0 = 0.2125◦. On the other hand, we know that
the accuracy of our rotational arm is ε = 0.0514285◦, so the best possible approximate
value is θ0 = 0.205714◦. Since each column in the panoramic image in reality describes the
latter angle θ0, we always use in calculations θ0 = n · ε, n ∈ IN , which is closest to the
result obtained from Eq. (1.10). The experiment in Sec. 1.8.5 confirms that this decision
is correct. To discriminate the two values between each other, let us mark them as θ0(α)
(Eq. (1.10)) and θ0(ε) (the estimation based on the accuracy of our rotational arm). We
use them from now on, but where only θ0 is given, then θ0 = θ0(ε).

C O

r
α

α

d

W
di

i

/2

mm grid paper

Figure 1.6: The relation between the parameters, which are important for determining the
radius r.

r represents the distance between the rotational center of the system and the optical
center of the camera. Since the exact position of the optical center is normally not known
(not given by the manufacturer), we have to estimate its position. Optical firms with their
special equipment would do the best job, but since this has not been an option for us, we
have used a simple method, which has been proved quite useful (Fig. 1.6): First the camera
horizontal view angle α has been estimated. Then we have captured a few images of the mm
grid paper from known distances di from one point on the camera to the paper. The optical
axis has been assumed to be perpendicular to the paper surface. From each image we have
read the widthWi of it in mm and used all now known values (α, di andWi) to estimate the
distance d from the paper to the optical center by manually drawing a geometrically precise
relation between the parameters. More distances di have been used to check the consistency
of all estimates. At the end the position of the optical center has been calculated as an
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average over all estimated values. Because we know the distances di and d, we also know
the position of the optical center with respect to the point on the camera from which we
have measured the distances di. Finally, we can measure the distance r. Nevertheless, this
is a rough estimation of the optical center position, but it can be optimized as shown in the
experiment in Sec. 1.8.9.
ϕ determines the column of each captured image, which is mosaiced into the panoramic

image. The two models for estimating angle ϕ (Eqs. (1.6) and (1.8)) differ from one
another: the first one is linear, while the second one is not. But since we use cameras with
the maximal horizontal view angle α = 39.72◦, the biggest possible difference between the
models is only 0.3137◦ (at the point, where ratio W2ϕ/W = 91/160). In the experiments
we use such values of ϕ that the difference is very small, i.e. the biggest difference is lower
than 0.1◦. The experiment in Sec. 1.8.6 shows that we obtain slightly better results with
the linear model for a given (estimated) set of parameters. This is why the linear model
was used in all other experiments.

We discuss the angle θ0 and the radius r in relation with the one-pixel error in estimation
of the angle ϕ in the end of Sec. 1.7.4.

1.7.3 Constraining the search space on the epipolar line

a) unconstrained length of the epipolar line: 1501 pixels

b) constrained length of the epipolar line: 145 pixels, 2ϕ = 29.9625◦

c) constrained length of the epipolar line: 17 pixels, 2ϕ = 3.6125◦

Figure 1.7: We can effectively constrain the search space on the epipolar line.

Knowing that the width of the panoramic image is much bigger than the width of the
captured image, we would have to search for a corresponding point along a very long epipolar
line (Fig. 1.7a). Therefore we would like to constraint the search space on the epipolar line
as much as possible. This means that the stereo reconstruction procedure executes faster.
A side effect is also an increased confidence in the estimated depth.
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Figure 1.8: Constraining the search space on the epipolar line in case of 2ϕ = 29.9625◦. In
the left eye panorama (top image) we have denoted the point for which we are searching the
corresponding point with a green cross. In the right eye panorama (bottom image) we have
used green color to mark the part of the epipolar line on which the corresponding point must
lie. The best corresponding point is marked with a red cross. With blue crosses we have
marked a number of points which presented temporary best corresponding point before we
actually found the point with the maximal correlation.

From Eq. (1.5) we can derive two conclusions, which nicely constraint the search space:

1. Theoretically, the minimal possible estimation of depth is lmin = r. This is true for
θ = 0◦. However, this is impossible in practice since the same point on the scene
cannot be seen in the column that will be mosaiced in the panorama for the left eye
and at the same time in the column that will be mosaiced in the panorama for the
right eye. If we observe the horizontal axis of the panoramic image with respects to
the direction of the rotation, we can see that every point on the scene that is shown
on both panoramic images (Fig. 1.4) is first imaged in the panorama for the left eye
and then in the panorama for the right eye. Therefore, we have to wait until the point
imaged in the column building up the left eye panorama moves in time to the column
building up the right eye panorama. If θ0 presents the angle by which the camera is
shifted, then 2θmin = θ0. In consequence, we have to make at least one basic shift of
the camera to enable a scene point projected in a right column of the captured image
forming the left eye panorama to be seen in the left column of the captured image
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forming the right eye panorama.

Based on this fact, we can search for the corresponding point in the right eye panorama
starting from the horizontal image coordinate x + 2θmin

θ0
= x + 1 forward, where x is

the horizontal image coordinate of the point in the left eye panorama for which we are
searching the corresponding point. Thus, we get the value +1 since the shift for the
angle θ0 describes the shift of the camera for a single column of the captured image.

In our system, the minimal possible depth estimation lmin depends on the value of the
angle ϕ:

lmin(2ϕ = 29.9625◦) = 302 mm
...

lmin(2ϕ = 3.6125◦) = 318 mm.

2. Theoretically, the estimation of depth is not constrained upwards, but from Eq. (1.5)
it is evident that the denominator must be non-zero. Practically, this means that for
the maximal possible depth estimation lmax the difference ϕ − θmax must be equal
to the value in the interval (0, θ02 ). We can write this fact as: θmax = n · θ02 , where
n = ϕ div θ0

2 and ϕ mod θ0
2 �= 0.

If we write the constraint for the last point, which can be a corresponding point on the
epipolar line, in analogy with the case of determining the starting point that can be a
corresponding point on the epipolar line, we have to search for the corresponding point
in the right eye panorama to including the horizontal image coordinate x + 2θmax

θ0
=

x+n. Here x is the horizontal image coordinate of the point on the left eye panorama
for which we are searching the corresponding point.

Equivalently, like in case of the minimal possible depth estimation lmin, the maximal
possible depth estimation lmax also depends upon the value of the angle ϕ:

lmax(2ϕ = 29.9625◦) = 54687 mm
...

lmax(2ϕ = 3.6125◦) = 86686 mm.

In the following sections we show that we cannot trust the depth estimates near the
last point of the epipolar line search space, but we have proven that we can effectively
constrain the search space.

To illustrate the use of specified constraints on real data, let us present the following example
which describes the working process of our system: while the width of the panorama is 1501
pixels, when searching for a corresponding point, we have to check only ϕ div θ0

2 = 145
pixels in case of 2ϕ = 29.9625◦ (Figs. 1.7b and 1.8) and only 17 in case of 2ϕ = 3.6125◦

(Fig. 1.7c).
From the last paragraph we could conclude that the stereo reconstruction procedure is

much faster for a smaller angle ϕ. However, in the next section we show that a smaller angle
ϕ, unfortunately, has also a negative property.
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a) 2ϕ = 29.9625◦ b) 2ϕ = 3.6125◦

Figure 1.9: The dependence of depth l on angle θ (Eq. (1.5), r = 30 cm and two different
values of ϕ are used). To visualize the one-pixel error in estimation of the angle θ, we have
marked the interval of width θ0

2 = 0.102857◦ between the vertical lines near the third point.

1.7.4 Meaning of the one-pixel error in estimation of the angle θ

Let us first define what we mean under the term one-pixel error. As the images are discrete,
we would like to know what is the value of the error in the depth estimation if we miss the
right corresponding point for only one pixel. And we would like to have this information
for various values of the angle ϕ.

Before we illustrate the meaning of the one-pixel error in estimation of the angle θ, let
us take a look at the graphs in Fig. 1.9. The graphs show the dependence of the depth
function l on the angle θ when two different values of the angle ϕ are used. It is evident that
the depth function l rises slower in case of a bigger angle ϕ. This property decreases the
error in the depth estimation l when a bigger angle ϕ is used and this decrease in the error
becomes even more evident if we know that the horizontal axis is discrete and the intervals
on the axis are θ0

2 degrees wide (see Fig. 1.9). If we compare the width of the interval in
both graphs with respect to the width of the interval that θ is defined in (θ ∈ [0, ϕ]), we
can see that the interval with the width of θ0

2 degrees is much smaller when a bigger angle
ϕ is used. This subsequently means that the one-pixel error in estimation of the angle θ is
much smaller when a bigger angle ϕ is used, since a shift for the angle θ0 describes the shift
of the camera for a single column of pixels.

Because of a discrete horizontal axis θ (Fig. 1.9), with intervals θ0
2 degrees wide (in

our case θ0 = 0.205714◦), the number of possible depth estimates is proportional to the
angle ϕ: we can calculate ϕ div θ0

2 = 145 different depth values (Eq. (1.5)) if we use the
angle 2ϕ = 29.9625◦ (Fig. 1.10a) and only 17 different depth values if we use the angle
2ϕ = 3.6125◦ (Fig. 1.10b). This is the disadvantage of small angles ϕ (see the experiment
in Sec. 1.8.1).

Let us illustrate the meaning of the one-pixel error in estimation of the angle θ: We
would like to know what is the error of the angle θ at the beginning of the interval over
which θ is defined (θ ∈ [0, ϕ]) and what is the error of the angle θ near the end of this
interval?

For this purpose we choose angles θ1 = ϕ
4 and θ2 = 7ϕ

8 . We are also interested in the
nature of the error for different values of the angle ϕ. In this example we use our already
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a) b)
2ϕ = 29.9625◦ 2ϕ = 3.6125◦

145 possible depth estimations 17 possible depth estimations

Figure 1.10: The number of possible depth estimates is proportional to the angle ϕ. Each
circle denotes a possible depth estimation value.

θ − θ0
2 θ θ + θ0

2

l [mm] 394.5 398 401.5
∆l [mm] 3.5
(error) 3.5

θ − θ0
2 θ θ + θ0

2

l [mm] 372.5 400 431.8
∆l [mm] 27.5
(error) 31.8

a) θ = θ1 = ϕ
4 , 2ϕ = 29.9625◦ b) θ = θ1 = ϕ

4 , 2ϕ = 3.6125◦

θ − θ0
2 θ θ + θ0

2

l [mm] 2252.9 2373.2 2507
∆l [mm] 120.3
(error) 133.8

θ − θ0
2 θ θ + θ0

2

l [mm] 1663 2399.6 4307.4
∆l [mm] 736.6
(error) 1907.8

c) θ = θ2 = 7ϕ
8 , 2ϕ = 29.9625◦ d) θ = θ2 = 7ϕ

8 , 2ϕ = 3.6125◦

Table 1.2: The one-pixel error ∆l in estimation of the angle θ, where r = 30 cm (Eq. (1.5)).
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standard values for the angle ϕ: 2ϕ = 29.9625◦ and 2ϕ = 3.6125◦. The results in Tab.
1.2 give the values of the one-pixel error in estimation of the angle θ for different values of
parameters θ and ϕ.

From the results in Tab. 1.2 we can conclude that the error is much bigger in case of a
smaller angle ϕ than in case of a bigger angle ϕ. The second conclusion is that the value
of the error increases as the value of the angle θ gets closer to the value of the angle ϕ.
This is true regardless of the value of the angle ϕ. This two conclusions are also evident
from Fig. 1.10: possible depth estimations lie on concentric circles centered in the center of
the system, with the distance between circles increasing the further away they lie from the
center (see also the experiment in Sec. 1.8.3). The figure nicely illustrates the fact that in
case of a small angle ϕ, we can estimate only a few different depths and the fact that the
one-pixel error in estimation of the angle θ increases if we move away from the center of the
system.

We would like to get reliable depth estimates, but at the same time we would like the
reconstruction procedure to execute fast. Here, we are faced with two contradicting re-
quirements, since we have to make a compromise between the accuracy of the system and
the speed of the reconstruction procedure. Namely, if we wanted to achieve the maximal
possible accuracy, then we would use the maximal possible angle ϕ. But this means that
we would have to conduct a search for the corresponding points on a larger segment of the
epipolar line. Consequently, the speed of the reconstruction process would be lower. We
would come to the same conclusion if we wanted to achieve a higher speed of the recon-
struction procedure, since the speed of the reconstruction process is inversely proportional
to its accuracy.

By varying the parameters θ0 and r we change the size of the error:

• By increasing the resolution of captured images, we decrease the angle θ0 (Eq. (1.10))
and subsequently decrease the rotational angle of the camera between two successively
captured images forming the stereo panoramic images. By nearly the same factor that
we increase (decrease) the resolution of captured images, we decrease (increase) the
value of the error ∆l, while the reconstruction process takes more (less) time by nearly
the same factor. By decreasing (increasing) the value θ0 we are able to calculate more
(less) depth values and consequently, we achieve bigger (lower) accuracy. Another way
to influence the parameter θ0 is to vary the horizontal view angle α. This influence is
presented separately in Sec. 1.7.7.

• By the same factor that we increase (decrease) the radius r, we increase (decrease) the
(biggest possible and sensible) depth estimation l and the size of error ∆l. Obviously,
if the camera optical center is at the same distance from one really close object for
different r, we achieve bigger accuracy by using smaller r. The behavior of ∆lmin

given in the next section nicely illustrates this fact. If we vary the parameter r, the
process of reconstruction is not any faster or slower. In practice, a bigger r means that
we can reconstruct bigger scenes (rooms). The geometry of our system is adequate
of reconstructing (smaller) rooms and is not really suitable for reconstruction of an
outdoor scene. This is due to the inherent property of the system: we do not trust
in the estimated depth l of far-away objects on the scene if the size of the error ∆l is
too big. If we vary the parameter r, the number of possible depth estimates naturally
stays the same.
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1.7.5 Definition of the maximal reliable depth value

In Sec. 1.7.3 we have defined the minimal possible depth estimation lmin and the maximal
possible depth estimation lmax, but we have not said anything about the meaning of the
one-pixel error in estimation of the angle θ for these two estimated depths. Let us examine
the size of the error ∆l for these two estimated depths. We calculate ∆lmin as the absolute
value of difference between the depth lmin and the depth l for which the angle θ is bigger
than the angle θmin by the angle θ0

2 :

∆lmin = |lmin(θmin)− l(θmin +
θ0
2

)| = |lmin(
θ0
2

)− l(θ0)|.

Similarly, we calculate the error ∆lmax as the absolute value of difference between the depth
lmax and the depth l for which the angle θ is smaller than the angle θmax by the angle θ0

2 :

∆lmax = |lmax(θmax)− l(θmax −
θ0
2

)| = |lmax(n
θ0
2

)− l((n− 1)
θ0
2

)|,

where the variable n denotes a positive number in equation: n = ϕ div θ0
2 .

2ϕ = 29.9625◦ 2ϕ = 3.6125◦

∆lmin 2 mm 19 mm
∆lmax 30172 mm 81587 mm

Table 1.3: The one-pixel error ∆l in estimation of the angle θ for the minimal possible depth
estimation lmin and the maximal possible depth estimation lmax with respect to the angle
ϕ and the radius r=30 cm.

In Tab. 1.3 we have gathered the error sizes for different values of the angle ϕ. The
results confirm statements in Sec. 1.7.4. We can add one additional conclusion: The value
of error ∆lmax is unacceptably high and this is true regardless of the value of the angle ϕ.
This is why we have to sensibly decrease the maximal possible depth estimation lmax. In
practice, this leads us to defining the upper boundary of the allowed error size (∆l) for a
single pixel in the estimation of the angle θ. Using it, we subsequently define the maximal
reliable depth value (see the example in the next section).

1.7.6 Contribution of the vertical reconstruction

Addressing the vertical reconstruction is essential for getting as accurate results as possible.
In this section we investigate how big is the difference between the depths estimated without
(Eq. (1.5)) and with (Eq. (1.9)) addressing the vertical reconstruction.

Let us first define the maximal reliable depth value lmax as suggested in the previous
section for the camera with the horizontal view angle α = 34◦ and the vertical view angle
β = 25◦. If we do not allow the error size ∆l to be more than 10 cm for r = 30 cm,
2ϕ = 29.9625◦ and θ0 = 0.205714◦, then, consequently, lmax = 213.5 cm. By introducing
the influence of the vertical view angle β into Eq. (1.9):

ω1 max =
β

2
,
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Figure 1.11: The contribution of the vertical reconstruction is small for the camera with the
horizontal view angle α = 34◦ and the vertical view angle β = 25◦ (Eq. (1.9)). The diamond
marks the depth lmax estimated without addressing the vertical reconstruction (Eq. (1.5)).
For detailed description see Sec. 1.7.6.

we get lmax(α, β) = 217.4 cm (Fig. 1.11). This means that the contribution of the vertical
reconstruction is small (lmax(α, β) − lmax = 3.9 cm, which is 1.8% of lmax(α, β)), but as
expected it has a positive influence on the overall results as shown in the experiment in
Sec. 1.8.4. By increasing (decreasing) the angle β (using different cameras) we also increase
(decrease) the contribution of the vertical reconstruction.

1.7.7 Influence of using different cameras

Each camera can be characterized by its horizontal view angle α. According to Eq. (1.10),
the angle θ0 gets bigger with bigger α, having in mind that the width W (the resolution) of
the captured images stays the same. This means that we have to capture less images with
the camera characterized by bigger α in order to generate the panoramic image of the same
scene. Let us illustrate this fact by presenting generated panoramic images of the same
scene, where we varied α (we used different cameras). In Fig. 1.12 we can see that for the
cameras mentioned in the end of Sec. 1.4, we get panoramic images of different horizontal
resolution, while the vertical resolution is equal for all cameras:

a) the camera with the horizontal view angle α = 16.53◦ gives a panoramic image with
the width Wpan = 3001 pixels,

b) the camera with the horizontal view angle α = 34◦ gives a panoramic image with the
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a) α = 16.53◦ =⇒ Wpan = 3001 pixels

b) α = 34◦ =⇒ Wpan = 1501 pixels

c) α = 39.72◦ =⇒ Wpan = 1201 pixels

Figure 1.12: Different cameras characterized by the horizontal view angle α give panoramic
images with different horizontal resolution Wpan.

width Wpan = 1501 pixels and

c) the camera with the horizontal view angle α = 39.72◦ gives a panoramic image with
the width Wpan = 1201 pixels.

So, by enlarging the camera horizontal field of view the width of the panorama gets lower,
while the height of the panorama stays the same. But the same height captures more scene,
since also the camera vertical field of view is enlarged.

This means that we generate a panoramic image faster if we use a camera with a wider
view angle. But the drawback here is that the horizontal angular resolution (the number of
possible depth estimates per one degree) gets lower. As already (implicitly) mentioned in
the end of Sec. 1.7.4, by varying the resolution of the captured images we vary the horizontal
and the vertical resolution of the generated panoramic image at fixed α. But now we can
add one more conclusion, namely, if we vary α then we vary only the horizontal resolution
of the generated panoramic image at fixed resolution of the captured images.

For each camera (and not only for the cameras that we use) the maximal number of
possible depth estimates depends on the horizontal resolution W of captured images. From
ϕmax = α/2, θ0 and the equation for determining the number of possible depth estimates
ϕmax div θ0

2 , we get very similar results for different cameras (α) at fixed W . (All the
results are equal to W if θ0(ε) = θ0(α) (see the discussion on estimation of the angle θ0
(θ0(α), θ0(ε)) in Sec. 1.7.2).) This means that the comparison of results gained using
different cameras should not be done at the similar ϕ, but rather at the similar number of
the possible depth estimates. This fact is used in the experiment in Sec. 1.8.8.

The size of the one-pixel error ∆l in estimation of the angle θ (Sec. 1.7.4), for ϕ’s defined
in described way, is also similar. This is evident from Tab. 1.4.
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θ θ + θ0
2

2ϕ = 29.9625◦

l [mm] (α = 34◦) 398 401.5
2ϕ = 38.47875◦ 396.7 400.2
(α = 39.72◦)

2ϕ = 29.9625◦

∆l [mm] (α = 34◦) 3.5
(error) 2ϕ = 38.47875◦ 3.5

(α = 39.72◦)
a) θ = θ1 = ϕ

4

θ θ + θ0
2

2ϕ = 29.9625◦

l [mm] (α = 34◦) 2373.2 2507
2ϕ = 38.47875◦ 2355.8 2488.8
(α = 39.72◦)

2ϕ = 29.9625◦

∆l [mm] (α = 34◦) 133.8
(error) 2ϕ = 38.47875◦ 133

(α = 39.72◦)
b) θ = θ2 = 7ϕ

8

Table 1.4: The one-pixel error ∆l in estimation of the angle θ for different cameras (α) at
the similar number of the possible depth estimates following from ϕ, where r = 30 cm (Eq.
(1.5)). For 2ϕ = 29.9625◦ the results are the same as in Tab. 1.2. Consequently, the same
θ values are used in this table.
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1.8 Experimental results

In the experiments the following cameras were used:

• camera #1 with parameters:

– α = 34◦

– β = 25◦

– r = 30 cm

– 2ϕ = 29.9625◦

– θ0 = 0.205714◦

• camera #2 with parameters:

– α = 39.72◦

– β = 30.54◦

– r = 31 cm

– 2ϕ = 38.47875◦

– θ0 = 0.257143◦

• camera #3 with parameters:

– α = 16.53◦

– β = 12.55◦

– r = 35.6 cm

– 2ϕ = 15.3935625◦

– θ0 = 0.102857◦.

All the panoramic images are generated from images with resolution of 160× 120 pixels.
Correspondences for each feature point on the scene used in the evaluation have been de-

termined with a normalized correlation procedure [4] and rechecked manually for consistency.
If the difference between the manually and the automatically determined correspondence
has been more than one pixel, such feature has not been used in the evaluation, otherwise
we believe in the automatically obtained result rather than in the manually obtained result,
because the latter is a subjective result, while the other is an objective result. Fact is that it
is hard to manually determine the corresponding point due to the discrete nature of images.
Nevertheless, in more than 75% the two results have been the same.

We use the normalized correlation procedure to search for corresponding points because it
is one of the most commonly used technique employed for that purpose. On the other hand,
correlation-based stereo algorithms are the only ones that can produce sufficiently dense
depth images with an algorithmic structure which lends itself nicely to fast implementations
because of the simplicity of the underlying computation [5]. Various improvements to real
time correlation-based stereo vision are discussed in [5, 45]. To improve the results we could
also employ multiple-baseline approach [6, 36]. It has been shown that by using multiple-
baseline stereo, match ambiguities can be reduced and the reconstruction precision can
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be improved as well. Other interesting methods than just those based on correlation are
described in [2]. A nice survey about a taxonomy and evaluation of dense two-frame stereo
correspondence algorithms is given in [48]. In [55], the authors review recent advances in
computational stereo, focusing primarly on correspondence methods, methods for occlusion
and real time implementations.

The normalized correlation procedure uses the principle of similarity of scene parts within
two scene images. The basic idea of the procedure is to find the part of the scene in the
second image which is most similar to a given part of the scene in the first image. The
procedure uses a window, within which the similarity is measured with help of the correlation
technique.

We use this procedure also when we generate depth images. Additionally, to increase the
confidence in the estimated depth, we employ a procedure called back-correlation [4]. The
main idea of this procedure is to first find a point m2 in the second image which corresponds
to a point m1 given in the first image. Then we have to find the point corresponding to the
point m2 in the first image. Let us denote this corresponding point by m′1. If the point m1

is equal to the point m′1 then we keep the estimated depth value. Otherwise, we do not keep
the estimated depth value. This means that the point m1, for which the back-correlation
was not successful, has no depth estimation associated with it in the depth image. Using the
back-correlation procedure we also solve the problem of occlusions. On the other hand, the
normalized correlation score can also be used for estimating the confidence in the estimated
depth.

All results were generated by using a correlation window of size 2n + 1 × 2n + 1, n=4,
if not mentioned otherwise. We searched for corresponding points only in the panoramic
image row determined by the epipolar geometry.

The primary evaluation of the system is based on mentioned feature points on the scene.
The quantitative measure, which gives the average error of the estimated depth (l (Eq.
(1.5)) or l(α, β) (Eq. (1.9))) in comparison to the actual distance (d) over n scene points,
is calculated as:

AV G% =
∑n
i=1 |li − di|/di

n
· 100%.

The second measure, which is in the results written right beside the first one, is the standard
deviation following from:

SD% =

√√√√∑n
i=1

(
|li−di|
di
· 100%−AV G%

)2

n− 1
,

which reveals how tightly all the various estimated depths are clustered around the average
error in the set of data.

On the other hand, the evaluation is also given qualitatively, i.e. visually, where this is
needed.

Note that all the presented results are rounded upon their calculations and not before.
Every time we refer to the features on the scene in tables or figures, the appropriate

features are also marked for better orientation in the panoramic image given at the bottom
of tables and figures.
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In the first three experiments (Secs. 1.8.1, 1.8.2 and 1.8.3) we use l (Eq. (1.5)) rather
than l(α, β) (Eq. (1.9)), so that afterwards we are able to demonstrate the influence of the
vertical reconstruction on the reconstruction accuracy.
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1.8.1 Influence of different ϕ values on the reconstruction accuracy
— The quantitative evaluation

Experiment background: See the discussion on the number of possible depth estimates
with respect to the angle ϕ in Sec. 1.7.4. The results were obtained with camera #1.
Results: The comparison of results using 2ϕ = 3.6125◦ and 2ϕ = 29.9625◦ (see Sec. 1.7.1
about how these values were obtained) is presented in Tab. 1.5.

2ϕ = 3.6125◦ 2ϕ = 29.9625◦

feature d l l − d l l − d
[cm] [cm] [cm (% of d)] [cm] [cm (% of d)]

1 111.5 89.4 -22.1 (-19.8%) 109 -2.5 (-2.3%)
2 95.5 76.7 -18.8 (-19.6%) 89.3 -6.2 (-6.5%)
3 64 53.8 -10.2 (-15.9%) 59.6 -4.4 (-6.9%)
4 83.5 76.7 -6.8 (-8.1%) 78.3 -5.2 (-6.2%)
5 92 89.4 -2.6 (-2.8%) 89.3 -2.7 (-2.9%)
6 86.5 76.7 -9.8 (-11.3%) 82.7 -3.8 (-4.4%)
7 153 133.4 -19.6 (-12.8%) 159.8 6.8 (4.5%)
8 130.5 133.4 2.9 (2.2%) 135.5 5 (3.8%)
9 88 76.7 -11.3(-12.8%) 87.6 -0.4 (-0.5%)
10 92 89.4 -2.6 (-2.8%) 89.3 -2.7 (-2.9%)
11 234.5 176.9 -57.6 (-24.6%) 213.5 -21 (-8.9%)
12 198 176.9 -21.1 (-10.7%) 179.1 -18.9 (-9.5%)
13 177 176.9 -0.1 (-0.1%) 186.7 9.7 (5.5%)

AVG%=11% ± 7.7% AVG%=5% ± 2.6%

Table 1.5: The comparison of results for two different values of ϕ.

Conclusion: As expected, the results with 2ϕ = 29.9625◦ are much better, since this angle
ensures many more possible depth estimates.
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1.8.2 Time analysis of the stereo reconstruction process

Experiment background: Searching for the corresponding point presents the most ex-
pensive part of the stereo reconstruction process. In this section we present some time
results, given in hours, minutes and seconds, though the ratios between these results are
more important, since the measured times depend on the code itself (optimized or unopti-
mized, sequential or parallel processing), the stereo-matching algorithm, the speed of the
processor, the number of processors etc. As already mentioned, our code is not optimized,
no processing is done in parallel, we use normalized correlation algorithm and all the calcu-
lations are done on a 350 MHz Intel PII PC (in C++ programming language). For better
illustration we have run the reconstruction process over the whole generated pair of stereo
panoramic images.

On one side, we have constructed dense panoramic images, which means that we have
tried to find the corresponding point in the right eye panorama for every point in the left
eye panorama.

On the other side, the sparse depth images have been created by searching only for the
correspondences of feature points in input panoramic images. The feature points used have
been vertical edges on the scene, derived by filtering the panoramic images with the Sobel
filter for searching the vertical edges [1, 4]. The time needed for locating the features on the
scene reconstructed in the sparse depth image is included in the presented times. But the
time needed for acquisition of panoramic images is not included in the reconstruction time.

Some of the generated depth images are presented in the next section.
The results were obtained with camera #1.

Results: The comparison of results using 2ϕ = 3.6125◦, 2ϕ = 29.9625◦ and the back-
correlation algorithm (BC = true or false), while building dense and sparse depth images,
is given in Tab. 1.6.

sparse depth image dense depth image
reconstruction time reconstruction time

[min./sec.] [hours/min./sec.]
2ϕ = 29.9625◦

BC = true 1/10 6/42/20
2ϕ = 29.9625◦

BC = false 0/38 3/21/56
2ϕ = 3.6125◦

BC = true 0/33 0/52/56
2ϕ = 3.6125◦

BC = false 0/21 0/29/6

Table 1.6: The comparison of the stereo reconstruction times.

Conclusion: As expected, the time needed for the reconstruction with the back-correlation
search is approximately twice the time needed for the reconstruction without it, while the
back-correspondence search algorithm has the same complexity as the correspondence search
algorithm (because the basic algorithm is the same in both cases, just the role of the stereo
images are swapped). And if we use the smaller angle ϕ, the reconstruction times are up
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to approximately eight times smaller from presented ones. This is due to the fact that in
case of smaller angle ϕ we have to check only 17 pixels on the epipolar line, while in case
of bigger angle ϕ we have to check 145 pixels on the epipolar line. The ratio between these
two numbers is approximately equal to the speed-up factor.

As mentioned, all results have been generated by using a correlation window of size
2n + 1 × 2n + 1, n=4. For comparison, if n=3 then the time needed to create the dense
panoramic depth image, while 2ϕ = 29.9625◦ and BC = true, is 4 hours, 20 minutes and
55 seconds. The ratio between the window areas is again approximately equal to the speed-
up factor. On the other hand, if we run the same process on the faster computer (PC
Intel PIV/2.0 GHz), the time needed to gain the same result is 1 hour, 1 minute and 29
seconds. The speed-up factor could again be attributed to the ratio between the processor
frequencies. Nevertheless, the newer processor is approximately 4 times faster, which means
that after optimizing the code, introducing Intel’s MMX SIMD (Single Instruction Multiple
Data) instruction set [15, 55] etc., we would gain the sparse panoramic depth image for
2ϕ = 29.9625◦ and BC = true in real time. At this point, real time to us means one stereo
reconstruction per second. For autonomous robot navigation the sparse depth image based
on vertical edges already contains important information about the environment.

Further stereo reconstruction process speed-up could be achieved by processing 8-bit
grayscale images with lower resolution, by doing the reconstruction of only part of the
scene in which we are interested, using the property of successive pixels in the panoramic
images to constrain the search space on the epipolar line even more, using different stereo-
matching algorithm etc. But the most efficient way to ensure the real time reconstruction
(at video rate) is to employ cluster of computers, doing real parallel processing [57]. Until
very recently, all truly real time implementations made use of special purpose hardware, like
digital signal processors (DSP) or field programmable gate arrays (FPGA) [5, 55].

On the other hand, real time correlation based stereo algorithms are discussed in [5, 45,
60]. In the latter, i.e. [60], the real time dense reconstruction is performed on symmetric
multiperspective panoramic images with resolution of 1324×120 pixels. The reconstruction
is done in 0.34 seconds on a 1.7 GHz PC.

According to Sec. 1.7.7, the speed-up could also be achieved if we use a camera with
a wider field of view, since this means that the width of the generated panoramic images
is lower. Consequently, the speed of the reconstruction process is higher. If we generate
the sparse depth image then the speed-up is not that noticeable, since the number of pixels
presenting edges is more or less the same. But in case of dense depth image the speed-up
factor can be substantial: The basic speed-up factor is given by the ratio between the widths
of panoramic images.

Real time, on the other hand, is a wide term, as it has different meanings in relation
with different applications and consequently, in our case, with demanded reconstruction
accuracy.

Let us at the end of this section also touch the storage requirements. Our panoramic
images are each of approximately 0.5 MB in size (bmp format), while in [43] the size of each
panoramic image is approximately 3400 MB (format is not specified). Their images are
really of hyper-resolution (19478×5184 pixels), but acquisition requirements (time, storage,
processing, cost) are obviously of great pretension.
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1.8.3 Influence of different ϕ values on the reconstruction accuracy
— The qualitative evaluation

Experiment background: We have used a simple stereo-matching algorithm based on the
correlation technique. In spite of that, we are interested in how good the obtained results,
i.e. depth images, are visually. Since it is hard to evaluate the quality of generated depth
images, we present four reconstructions of the room from generated depth images. In this
way, we are able to evaluate the quality of generated depth images and consequently the
quality of the system. The plan of the room that we have reconstructed is given in Fig. 1.13.
In the sketch we have marked the features on the scene that help us evaluate the quality
of generated depth images. The result of the (3D) reconstruction process is a ground-plan
of the scene. The goal of the experiment is to see how well the reconstruction fits the real
room. The results were obtained with camera #1.
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Figure 1.13: The top picture contains the plan of the reconstructed room. In the bottom
picture we have marked the features on the scene that help us evaluate the quality of
generated depth images.

Results: Fig. 1.14 shows some results of our system. In case denoted with b), we have
constructed the dense panoramic image. Black color marks the points on the scene with
no depth estimation associated. Otherwise, the nearer the point on the scene is to the
rotational center of the system, the lighter the point appears in the depth image.

In case denoted with d), we have used the information about the confidence in the
estimated depth (case c), which we get from the normalized correlation estimations. In this
way, we have eliminated from the dense depth image all depth estimates which do not have a
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a) b) c) d) e)

Figure 1.14: Some stereo reconstruction results when creating the depth image for the
left eye at the angle 2ϕ = 29.9625◦: a) the left eye panorama, b) a dense depth image
/ using back-correlation / reconstruction time: 6 hours, 42 min., 20 sec., c) confidence in
the estimated depth, d) the dense depth image after weighting / without back-correlation
/ reconstruction time: 3 hours, 21 min., 56 sec., e) a sparse depth image / without back-
correlation / reconstruction time: 38 seconds. The number of pixels for which we searched
for the correspondences in case of b) was 147840 (×2 due to employed back-correlation) and
only 4744 in case of e). In case of b) we calculated 21436800 (×2) correlation scores and in
case of e) only 67110 scores.
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high enough associated confidence estimation. The lighter the point appears in case c), the
more we trust in the estimation of the normalized correlation for this point. In case marked
with e), we have created a sparse depth image by searching only for the correspondences of
feature points (vertical edges) in input panoramic images.

The following properties are common to the (3D) reconstructions in Figs. 1.15, 1.16,
1.17 and 1.18:

• Big dots denote the actual positions of features on the scene (measured by hand).

• A big dot near the center of the reconstruction shows the position of the center of our
system.

• Small black dots represent reconstructed points on the scene.

• Lines between black dots denote links between two successively reconstructed points.

The result of the reconstruction process based on the 68th row of the dense depth
image is given in Fig. 1.15 for the angle 2ϕ = 29.9625◦ and in Fig. 1.16 for the angle
2ϕ = 3.6125◦. We have used back-correlation and weighting. In Figs. 1.15 and 1.16 black
dots are reconstructed on the basis of the estimated depth values, which are stored in the
same row of the depth image. The features on the scene marked with big dots are not
necessarily visible in the same row.

We have built sparse depth images by first detecting vertical edges in panoramic images.
We have made an assumption that points on vertical edges have the same depth which is
approximately true in the examples shown here. The results of the reconstruction shown in
Figs. 1.17 and 1.18 are based on information within the entire sparse depth image: first, we
calculate the average depth within each column of the depth image and then we show this
average depth value in the ground-plan of the scene. In Figs. 1.17 and 1.18 the results have
been derived from the sparse depth image gained by using back-correlation. The result in
Fig. 1.17 is given for the angle 2ϕ = 29.9625◦ and the result in Fig. 1.18 is given for the
angle 2ϕ = 3.6125◦. We imposed one additional constraint on the reconstruction process:
each column in the depth image must contain at least four points with associated depth
estimates or the average depth is not shown in the ground-plan of the scene.
Conclusion: Although the correlation technique has been used the presented results are
good: We can see that the reconstructions correspond to the outline of the room and that
the reconstructions support well the statements made throughout Sec. 1.7 — and this was
exactly the point of this experiment.

In Fig. 1.16 we can observe two properties of the system (Sec. 1.7.4): the reconstructed
points are on concentric circles centered in the center of the system and the distance between
the circles increases the further away they lie from the center. The figure nicely illustrates
the fact that in case of a small angle ϕ, we can estimate only a few different depths and the
fact that the one-pixel error in estimation of the angle θ increases as we move away from
the center of the system.

As expected, the correlation technique had performed badly on uniform parts of the
scene (e.g. walls), while the edges on the scene are well exposed and assessed in the depth
images.
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Figure 1.15: The top picture is a ground-plan showing the result of the reconstruction
process based on the 68th row of the dense depth image. We have used back-correlation
and weighting for the angle 2ϕ = 29.9625◦. The corresponding depth image is shown in the
middle picture. For better orientation, the reconstructed row and the features on the scene
for which we have measured the actual depth by hand are shown in the bottom picture.
The features on the scene marked with big dots and associated numbers are not necessarily
visible in this row.
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Figure 1.16: The top picture is a ground-plan showing the result of the reconstruction
process based on the 68th row of the dense depth image. We have used back-correlation
and weighting for the angle 2ϕ = 3.6125◦. The corresponding depth image is shown in the
middle picture. For better orientation, the reconstructed row and the features on the scene
for which we have measured the actual depth by hand are shown in the bottom picture.
The features on the scene marked with big dots and associated numbers are not necessarily
visible in this row.
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Figure 1.17: The top picture is a ground-plan showing the result of the reconstruction
process based on the average depth within each column of the sparse depth image. We have
used back-correlation for the angle 2ϕ = 29.9625◦. The corresponding sparse depth image
is shown in the middle picture.
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Figure 1.18: The top picture is a ground-plan showing the result of the reconstruction
process based on the average depth within each column of the sparse depth image. We have
used back-correlation for the angle 2ϕ = 3.6125◦. The corresponding sparse depth image is
shown in the middle picture.
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1.8.4 Influence of addressing the vertical reconstruction

Experiment background: In Sec. 1.7.6 we have showed that the contribution of the
vertical reconstruction is small. Here, we want to prove its positive influence on the overall
accuracy of the system. The results were obtained with camera #1.
Results: The comparison of depth estimates l (Eq. (1.5)) and l(α, β) (Eq. (1.9)) is
presented in Tab. 1.7.

feature d l l − d l(α, β) l(α, β)− d
[cm] [cm] [cm (% of d)] [cm] [cm (% of d)]

1 111.5 109 -2.5 (-2.3%) 110.0 -1.5 (-1.3%)
2 95.5 89.3 -6.2 (-6.5%) 89.6 -5.9 (-6.1%)
3 64 59.6 -4.4 (-6.9%) 59.6 -4.4 (-6.8%)
4 83.5 78.3 -5.2 (-6.2%) 78.8 -4.7 (-5.6%)
5 92 89.3 -2.7 (-2.9%) 89.8 -2.2 (-2.4%)
6 86.5 82.7 -3.8 (-4.4%) 83.1 -3.4 (-3.9%)
7 153 159.8 6.8 (4.5%) 160.2 7.2 (4.7%)
8 130.5 135.5 5 (3.8%) 135.5 5.0 (3.8%)
9 88 87.6 -0.4 (-0.5%) 87.6 -0.4 (-0.4%)
10 92 89.3 -2.7 (-2.9%) 90.1 -1.9 (-2.1%)
11 234.5 213.5 -21 (-8.9%) 215.0 -19.5 (-8.3%)
12 198 179.1 -18.9 (-9.5%) 180.4 -17.6 (-8.9%)
13 177 186.7 9.7 (5.5%) 188.5 11.5 (6.5%)

AVG%=5% ± 2.6% AVG%=4.7% ± 2.7%

Table 1.7: The comparison of results without and with addressing the vertical reconstruc-
tion.

Conclusion: As expected, addressing the vertical reconstruction brings better results. This
was observed also in other cases: reconstructions of different rooms using different cameras.
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1.8.5 Influence of different θ0 values on the reconstruction accuracy

Experiment background: See the discussion on estimation of the angle θ0 (θ0(α), θ0(ε))
in Sec. 1.7.2. The results were obtained with camera #1.
Results: The comparison of results using θ0(α) = 0.2125◦ (Eq. (1.10)) and θ0(ε) =
0.205714◦ (the estimation based on the accuracy of our rotational arm) is presented in
Tab. 1.8.

θ0(ε) = 0.205714◦ θ0(α) = 0.2125◦

feature d l(α, β) l(α, β)− d l(α, β) l(α, β)− d
[cm] [cm] [cm (% of d)] [cm] [cm (% of d)]

1 111.5 110.0 -1.5 (-1.3%) 132.2 20.7 (18.6%)
2 95.5 89.6 -5.9 (-6.1%) 102.5 7.0 (7.3%)
3 64.0 59.6 -4.4 (-6.8%) 63.6 -0.4 (-0.6%)
4 83.5 78.8 -4.7 (-5.6%) 87.9 4.4 (5.2%)
5 92.0 89.8 -2.2 (-2.4%) 102.7 10.7 (11.6%)
6 86.5 83.1 -3.4 (-3.9%) 93.6 7.1 (8.2%)
7 153.0 160.2 7.2 (4.7%) 220.7 67.7 (44.2%)
8 130.5 135.5 5.0 (3.8%) 174.3 43.8 (33.6%)
9 88.0 87.6 -0.4 (-0.4%) 99.7 11.7 (13.3%)
10 92.0 90.1 -1.9 (-2.1%) 103.1 11.1 (12.1%)
11 234.5 215.0 -19.5 (-8.3%) 351.3 116.8 (49.8%)
12 198.0 180.4 -17.6 (-8.9%) 263.4 65.4 (33.0%)
13 177.0 188.5 11.5 (6.5%) 281.8 104.8 (59.2%)

AVG%=4.7% ± 2.7% AVG%=22.8% ± 19%

Table 1.8: The comparison of results for two different values of θ0.

Conclusion: As expected, the results with θ0(ε) = 0.205714◦ are much better, since it
presents the angle for which the robotic arm is rotated in reality. The fact that even a small
deviation from real θ0(ε) brings much worse results is also obvious from these results.
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1.8.6 Linear versus non-linear model for estimation of angle ϕ

Experiment background: See the discussion on estimation of the angle ϕ in Sec. 1.7.2.
The results were obtained with camera #1.
Results: The comparison of results using 2ϕ = 29.9625◦ (Eq. (1.6)) and 2ϕ = 30.15774565◦

(Eq. (1.8)) is presented in Tab. 1.9.

2ϕ = 29.9625◦ 2ϕ = 30.15774565◦

feature d l(α, β) l(α, β)− d l(α, β) l(α, β)− d
[cm] [cm] [cm (% of d)] [cm] [cm (% of d)]

1 111.5 110.0 -1.5 (-1.3%) 108.1 -3.4 (-3.0%)
2 95.5 89.6 -5.9 (-6.1%) 88.5 -7.0 (-7.4%)
3 64.0 59.6 -4.4 (-6.8%) 59.2 -4.8 (-7.4%)
4 83.5 78.8 -4.7 (-5.6%) 78.0 -5.5 (-6.6%)
5 92.0 89.8 -2.2 (-2.4%) 88.6 -3.4 (-3.7%)
6 86.5 83.1 -3.4 (-3.9%) 82.2 -4.3 (-5.0%)
7 153.0 160.2 7.2 (4.7%) 155.7 2.7 (1.8%)
8 130.5 135.5 5.0 (3.8%) 132.4 1.9 (1.5%)
9 88.0 87.6 -0.4 (-0.4%) 86.5 -1.5 (-1.7%)
10 92.0 90.1 -1.9 (-2.1%) 88.9 -3.1 (-3.4%)
11 234.5 215.0 -19.5 (-8.3%) 206.7 -27.8 (-11.9%)
12 198.0 180.4 -17.6 (-8.9%) 174.6 -23.4 (-11.8%)
13 177.0 188.5 11.5 (6.5%) 180.4 182.1 (3.4%)

AVG%=4.7% ± 2.7% AVG%=5.3% ± 3.5%

Table 1.9: The comparison of results for two different values of ϕ: the first one is gained
from the linear and the second one from the non-linear model for estimation of angle ϕ.

Conclusion: The results are not much different, though the results obtained with the linear
model are better. Similar results were obtained with camera #2 in a different room (using
again l(α, β); see the experiment in Sec. 1.8.8): For 2ϕ = 38.47875◦ (the linear model) the
results were AVG%=2.7% ± 2.3%, while for 2ϕ = 38.57170666◦ (the non-linear model) the
results were AVG%=3.1% ± 2.6%. Based on these results we can conclude that the linear
model is better, at least for a given (estimated) set of parameters.

42



1.8.7 Repeatability of results — Different room

Experiment background: We want to see if we can achieve similar results as in Sec.
1.8.4, using the same camera (camera #1) in a different room?
Results: The results obtained in the different room are presented in Tab. 1.10.

feature d l(α, β) l(α, β)− d
[cm] [cm] [cm (% of d)]

1 63.2 61.5 -1.7 (-2.7%)

2 51.5 50.8 -0.7 (-1.3%)

3 141.0 147.3 6.3 (4.5%)

4 142.0 158.0 16.0 (11.3%)

5 216.0 220.4 4.4 (2.0%)

6 180.0 182.7 2.7 (1.5%)

7 212.0 248.8 36.8 (17.4%)

8 49.0 45.4 -3.6 (-7.4%)

9 49.0 45.4 -3.6 (-7.4%)

10 97.0 95.1 -1.9 (-2.0%)

11 129.5 142.2 12.7 (9.8%)

12 134.0 136.6 2.6 (1.9%)

13 119.0 118.4 -0.6 (-0.5%)

14 156.0 162.5 6.5 (4.2%)

15 91.0 91.2 0.2 (0.2%)

16 97.7 99.3 1.6 (1.6%)

17 111.0 109.3 -1.7 (-1.6%)

18 171.5 175.7 4.2 (2.4%)

19 171.5 182.9 11.4 (6.7%)

AVG%=4.5% ± 4.5%

1    2                         3             4             5        6     7           8                     9  10      11 12/13    14  15                 16      17/18/19

Table 1.10: The results obtained in the different room, but with the same camera as in Sec.
1.8.4.

Conclusion: The overall results are very similar. We can conclude that we can achieve
similar accuracy in different rooms. This is also evident from the next experiment, where
we have reconstructed the third room with three different cameras. One of them is again
camera #1. Small differences in results are expected, since each room has its own shape, i.e.
the depth distribution around the center of the system is different. And we know how this
influences the accuracy, while we are limited with the number of possible depth estimates,
which are approximations of the real distances (Sec. 1.7.4).
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1.8.8 Repeatability of results — Different cameras

Experiment background: We want to see if we can achieve similar results as in Secs.
1.8.4 and 1.8.7, using different cameras in a different, third room? As mentioned in Sec.
1.7.7, the comparison of results gained using different cameras should not be done at the
similar ϕ, but rather at the similar number of possible depth estimates. This fact is used in
this experiment.
Results: The comparison of results for three different cameras is given in Tab. 1.11. Note
that for features marked 3, 5, 6, 7, 15, 19, 20 and 21 the real distance d in case of camera
#3 is different from the presented one. The reason for this lies in the vertical view angle of
the camera β, which is smaller in comparison to other two cameras. This means that some
marked feature points are not seen in the panoramic images generated with camera #3, so
we have chosen a nearby features with similar distances (see the panoramic image in Tab.
1.12). By all means, in the calculations we have used the correct distances.

camera #1 camera #2 camera #3
feature d l(α, β) l(α, β)− d l(α, β) l(α, β)− d l(α, β) l(α, β)− d

[cm] [cm] [cm (% of d)] [cm] [cm (% of d)] [cm] [cm (% of d)]

1 165.0 162.3 -2.7 (-1.6%) 159.1 -5.9 (-3.6%) 149.0 -16.0 (-9.7%)
2 119.0 118.0 -1.0 (-0.9%) 118.0 -1.0 (-0.8%) 114.1 -4.9 (-4.2%)
3 128.0 133.7 5.7 (4.4%) 130.1 2.1 (1.7%) 119.2 -6.3 (-5.0%)
4 126.5 125.6 -0.9 (-0.7%) 118.3 -8.2 (-6.5%) 114.0 -12.5 (-9.9%)
5 143.0 146.7 3.7 (2.6%) 141.4 -1.6 (-1.1%) 127.8 -13.2 (-9.3%)
6 143.0 151.9 8.9 (6.2%) 141.5 -1.5 (-1.1%) 130.9 -10.6 (-7.5%)
7 142.5 152.7 10.2 (7.2%) 145.0 2.5 (1.7%) 130.9 -11.1 (-7.8%)
8 136.5 141.0 4.5 (3.3%) 135.6 -0.9 (-0.7%) 131.0 -5.5 (-4.0%)
9 104.5 106.8 2.3 (2.2%) 104.6 0.1 (0.1%) 99.1 -5.4 (-5.2%)
10 81.7 79.6 -2.1 (-2.5%) 79.4 -2.3 (-2.8%) 78.6 -3.1 (-3.7%)
11 84.5 80.6 -3.9 (-4.6%) 80.6 -3.9 (-4.6%) 82.3 -2.2 (-2.6%)
12 83.5 82.7 -0.8 (-0.9%) 83.8 0.3 (0.4%) 83.6 0.1 (0.1%)
13 97.0 94.9 -2.1 (-2.2%) 95.7 -1.3 (-1.3%) 93.8 -3.2 (-3.3%)
14 110.0 114.9 4.9 (4.5%) 109.5 -0.5 (-0.5%) 104.9 -5.1 (-4.6%)
15 180.0 191.1 11.1 (6.2%) 165.8 -14.2 (-7.9%) 158.1 -12.9 (-7.5%)
16 124.5 129.9 5.4 (4.3%) 125.2 0.7 (0.6%) 119.2 -5.3 (-4.2%)
17 132.5 132.4 -0.1 (-0.1%) 127.9 -4.6 (-3.5%) 121.8 -10.7 (-8.0%)
18 134.5 136.6 2.1 (1.5%) 131.6 -2.9 (-2.2%) 124.7 -9.8 (-7.3%)
19 113.0 109.4 -3.6 (-3.2%) 107.8 -5.2 (-4.6%) 101.1 -6.9 (-6.4%)
20 125.0 121.6 -3.4 (-2.8%) 118.7 -6.3 (-5.0%) 111.6 -7.4 (-6.3%)
21 130.0 128.8 -1.2 (-1.0%) 121.8 -8.2 (-6.3%) 116.6 -8.4 (-6.8%)

AVG%=3% ± 2% AVG%=2.7% ± 2.3% AVG%=5.9% ± 2.5%

1                         2     3/4  5 6/7    8     9                    10      11   12     13  14/15                  16/17     18       19 20/21

Table 1.11: The results obtained in the third room with three different cameras.

Conclusion: The results show that similar overall accuracy can be achieved if we use
different cameras. The reason for somewhat worse results in case of camera #3 could be
attributed to the systematic error presence in the estimation of parameter r, as investigated
in the next experiment.
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1.8.9 Possibility of systematic error presence in the estimation of
r

Experiment background: In Sec. 1.7.2 we have described how the estimation of param-
eter r is performed. Obviously, it is harder to estimate the location of the optical center in
this way, if the view angle is smaller. The problem is even bigger if the camera cannot focus
well on the near objects. Let us say that this estimation process is a good starting point
for the estimation of system accuracy. We can optimize the estimation of r by minimizing
AVG%: Simply, by letting r go through an interval of possible values around the estimated
value, we can calculate AVG% for each value of r and, in the end, assign to r the value
which minimizes AVG%. The results were obtained with camera #3.
Results: Tab. 1.12 compares the accuracy results before (r = 356 mm) and after (r = 376
mm) the optimization of parameter r.
Conclusion: We see that the results obtained after the optimization are much better. That
r has been underestimated is also obvious from the results of the difference l(α, β)−d before
the optimization, while they are bigger than normal and they are all, except one, negative.

The same optimization process could of course be used with all other cameras.
The remaining error in accuracy could be attributed to:

• the fact that we are limited with the number of possible depth estimates, which are
approximations of the real distances (Sec. 1.7.4),

• the error in estimations of other parameters (e.g. α),

• the error due to the lens distortion presence (this matter is addressed in Sec. 1.8.10),

• the human factor (e.g. the distances to the features on the scene are measured man-
ually) and/or

• the possible errors in robotic arm movement.
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before optimization after optimization
feature d l(α, β) l(α, β)− d l(α, β) l(α, β)− d

[cm] [cm] [cm (% of d)] [cm] [cm (% of d)]
1 165.0 149.0 -16.0 (-9.7%) 157.4 -7.6 (-4.6%)
2 119.0 114.1 -4.9 (-4.2%) 120.5 1.5 (1.2%)
3 125.5 119.2 -6.3 (-5.0%) 125.9 0.4 (0.3%)
4 126.5 114.0 -12.5 (-9.9%) 120.4 -6.1 (-4.8%)
5 141.0 127.8 -13.2 (-9.3%) 135.0 -6.0 (-4.2%)
6 141.5 130.9 -10.6 (-7.5%) 138.3 -3.2 (-2.3%)
7 142.0 130.9 -11.1 (-7.8%) 138.2 -3.8 (-2.7%)
8 136.5 131.0 -5.5 (-4.0%) 138.4 1.9 (1.4%)
9 104.5 99.1 -5.4 (-5.2%) 104.6 0.1 (0.1%)
10 81.7 78.6 -3.1 (-3.7%) 83.1 1.4 (1.7%)
11 84.5 82.3 -2.2 (-2.6%) 86.9 2.4 (2.9%)
12 83.5 83.6 0.1 (0.1%) 88.3 4.8 (5.8%)
13 97.0 93.8 -3.2 (-3.3%) 99.1 2.1 (2.1%)
14 110.0 104.9 -5.1 (-4.6%) 110.8 0.8 (0.7%)
15 171.0 158.1 -12.9 (-7.5%) 167.0 -4.0 (-2.4%)
16 124.5 119.2 -5.3 (-4.2%) 125.9 1.4 (1.2%)
17 132.5 121.8 -10.7 (-8.0%) 128.7 -3.8 (-2.9%)
18 134.5 124.7 -9.8 (-7.3%) 131.7 -2.8 (-2.1%)
19 108.0 101.1 -6.9 (-6.4%) 106.8 -1.2 (-1.2%)
20 119.0 111.6 -7.4 (-6.3%) 117.8 -1.2 (-1.0%)
21 125.0 116.6 -8.4 (-6.8%) 123.1 -1.9 (-1.5%)

AVG%=5.9% ± 2.5% AVG%=2.2% ± 1.5%

 1                                                    2             3/4        5    6/7            8            9                                            10

11          12              13           14 15                                              16/17                18                      19       20 21

Table 1.12: The comparison of results before and after the optimization of parameter r.

46



1.8.10 Influence of lens distortion presence on the reconstruction
accuracy

Experiment background: Lens distortion is a well known property of camera lens, which
causes images to be spherised at their center. This basically means that the pixels that
should be on the image edge are actually moved more towards the center of the image. How
much they are moved towards the center depends on the camera field of view. Bigger is
the field of view, bigger is the error due to the lens distortion. For camera #3 the maximal
error due to the lens distortion is small, only 0.8 pixel in 160×120 pixel images. On the
other hand, for camera #2 the maximal error due to the lens distortion is already 5 pixels
in 160×120 pixel images. Fig. 1.19 nicely illustrates this fact. (The error in 640×480 pixel
images is 4 times bigger.)

Figure 1.19: Each row of images shows distorted image (left) and undistorted image (right),
after the distortion has been suppressed. The images in the top row have been taken with
camera #2, while the images in the bottom row have been taken with camera #3. The
resolution of all presented images is 640×480 pixels.

Since the best results obtained with camera #3 are already very good (Sec. 1.8.9) and
the size of distortion here is very small, we use the camera with the widest view angle,
i.e. camera #2, in this experiment. Fig. 1.20 shows the camera model gained after the
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calibration process over a set of 640×480 pixel images [54]. We have used this model to
undistort the captured images before they were merged into the panoramic images.

Pixel error                  = [0.3733, 0.392]
Focal Length                 = (885.96, 878.971)
Principal Point              = (318.157, 241.741)
Skew                         = 0.0003527
Radial coefficients          = (0.3297, 0.1147, 0)
Tangential coefficients      = (0.001293, 0.0005257)

+/-[5.665, 5.53]
+/-[3.678, 3.419]

+/-0.0004781
+/-[0.01416, 0.0797, 0]

+/-[0.0007753, 0.0008352]
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Figure 1.20: The camera model gained after the calibration process over a set of 640×480
pixel images [54]. Note that the values of estimated parameters (that are given in pixels) are
4× smaller for 160×120 pixel images, which we use for generating panoramic images, and
that the errors given in the right bottom side of the figure are approximately three times the
standard deviations (for reference). Having that in mind, we see that the principal point in
160×120 pixel images is right in the middle of the images. The values on the curves in the
figure present the errors in pixels due to the lens distortion.

As we mentioned, the pixels that should be on the image edge are actually moved more
towards the center of the image, which means that after the distortion is corrected the
camera field of view gets smaller (Fig. 1.19). The new vertical field of view αnew was
estimated using a simple observation about the part of the scene (number of pixels n) that
disappeared from the image due to the distortion correction (similar to Eq. (1.6)):

αnew =
W − n
W

· α; for n = 9⇒ αnew = 37.48575◦.

W is again the width of the captured image.
We also know that different α brings different r (Sec. 1.7.2), so we have to correct the

size of parameter r as well:
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rnew =
αnew
α
· r = 293 mm.

Similarly, all other parameters could be estimated if they are needed, e.g. the focal
length f could be estimated from Eq. (1.2). But θ0 stays the same as it still (even after
the distortion correction) represents the angle for which the rotational arm has been moved
between each two successively captured images.
Results: By using undistorted images to generate panoramic images and the new values
of parameters, we obtain results presented on the right side in Tab. 1.13. For comparison,
on the left side the results using distorted sequence are presented. In case of undistorted
sequence, we have used 2ϕ = 37.04933695◦ as it ensures a similar number of possible depth
estimates as the basic settings of camera #2 (Sec. 1.7.7). Note that for the feature marked
11 the real distance d in case of undistorted sequence is different from the presented one. The
reason for this lies in the fact that the normalized correlation procedure has been unable to
find the appropriate corresponding point, so we have chosen a nearby feature with a similar
distance. By all means, in the calculations we have used the correct distance.
Conclusion: We can conclude that processing undistorted images brings better results,
though quite comparable. Having in mind that undistorting the sequence means that more
processing time is needed (for instance, in Matlab (running on a 2.0 GHz Intel PIV PC)
it takes a few hours to process 1501 images of size 160×120 pixels), perhaps we should
be satisfied with the results gained using the distorted sequence. Another drawback of
undistorted images is that they are more blurred in comparison to distorted originals (Fig.
1.19). Nevertheless, by using cameras with even wider field of view the distortion gets more
obvious, and consequently we cannot always neglect its presence.
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distorted sequence undistorted sequence
feature d l(α, β) l(α, β)− d l(α, β) l(α, β)− d

[cm] [cm] [cm (% of d)] [cm] [cm (% of d)]
1 165.0 159.1 -5.9 (-3.6%) 165.6 0.6 (0.4%)
2 119.0 118.0 -1.0 (-0.8%) 118.4 -0.6 (-0.5%)
3 128.0 130.1 2.1 (1.7%) 123.7 -4.3 (-3.4%)
4 126.5 118.3 -8.2 (-6.5%) 122.3 -4.2 (-3.3%)
5 143.0 141.4 -1.6 (-1.1%) 139.5 -3.5 (-2.5%)
6 143.0 141.5 -1.5 (-1.1%) 139.5 -3.5 (-2.4%)
7 142.5 145.0 2.5 (1.7%) 143.8 1.3 (0.9%)
8 136.5 135.6 -0.9 (-0.7%) 133.7 -2.8 (-2.0%)
9 104.5 104.6 0.1 (0.1%) 103.8 -0.7 (-0.7%)
10 81.7 79.4 -2.3 (-2.8%) 77.1 -4.6 (-5.6%)
11 84.5 80.6 -3.9 (-4.6%) 78.4 -5.1 (-6.1%)
12 83.5 83.8 0.3 (0.4%) 81.7 -1.8 (-2.1%)
13 97.0 95.7 -1.3 (-1.3%) 96.5 -0.5 (-0.6%)
14 110.0 109.5 -0.5 (-0.5%) 106.3 -3.7 (-3.4%)
15 180.0 165.8 -14.2 (-7.9%) 173.0 -7.0 (-3.9%)
16 124.5 125.2 0.7 (0.6%) 122.7 -1.8 (-1.4%)
17 132.5 127.9 -4.6 (-3.5%) 129.4 -3.1 (-2.3%)
18 134.5 131.6 -2.9 (-2.2%) 133.6 -0.9 (-0.7%)
19 113.0 107.8 -5.2 (-4.6%) 109.8 -3.2 (-2.8%)
20 125.0 118.7 -6.3 (-5.0%) 122.4 -2.6 (-2.0%)
21 130.0 121.8 -8.2 (-6.3%) 126.1 -3.9 (-3.0%)

AVG%=2.7% ± 2.3% AVG%=2.4% ± 1.6%

1                         2     3/4  5 6/7    8     9                    10     11    12     13  14/15                  16/17     18       19 20/21

Table 1.13: The comparison of results obtained without and with the lens distortion correc-
tion.
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1.9 Summary

We have presented a comprehensive analysis of our mosaic-based system for construction of
depth panoramic images using only one standard camera.

The conclusions about the system effectiveness and its accuracy are well exposed in
Secs. 1.7 and 1.8. Nevertheless, let us summarize the main conclusions made throughout
the chapter and indicate in which section of the chapter each conclusion has been made:

• The geometry of capturing multiperspective panoramic images can be described with
a pair of parameters (r, ϕ) (Sec. 1.4). By increasing (decreasing) each of them, we
increase (decrease) the baseline (2r0) of our stereo system.

• The stereo pair acquisition procedure with only one standard camera cannot be exe-
cuted in real time (Sec. 1.7.1).

• The epipolar geometry in case of symmetric stereo pair of panoramic images, which
we use in the reconstruction process, is very simple: epipolar lines are image rows
(Sec. 1.5).

• The parameters of the system should be estimated as precisely as possible, since
already a small difference can cause a big difference in the reconstruction accuracy of
the system (Secs. 1.7.2, 1.8.5, 1.8.6 and 1.8.9).

• We can effectively constrain the search space on the epipolar line (Sec. 1.7.3). This
follows directly from the interpretation of the equation for depth estimation l (Eq.
(1.5)), while other rules for constraining the search space, known from traditional
stereo vision systems, can also be applied in addition to the basic constraint. An
example of such rule is to seek for the neighboring pair of corresponding points only
from the previously found correspondence on.

• The confidence in the estimated depth is variable: 1) the bigger the slope of the
function l, the smaller the confidence in the estimated depth (one-pixel error ∆l gets
bigger) and 2) the bigger the value ϕ for each camera (α), the bigger the number of
possible depth estimates and consequently the bigger the confidence (Secs. 1.7.4, 1.8.1
and 1.8.3).

• We can influence the parameter θ0 by varying the resolution of captured images or by
varying the horizontal view angle α (Secs. 1.7.4 and 1.7.7).

• By varying the radius r, we vary the biggest possible and sensible depth estimation l
and the size of the one-pixel error ∆l (Sec. 1.7.4).

• The bigger the value α, the smaller the horizontal resolution of panoramic images at
fixed resolution of captured images (Sec. 1.7.7). Consequently, the number of possible
depth estimates per one degree gets lower.

• In practice, from the autonomous robot localization and navigation system point of
view, we should define the upper boundary of the allowed one-pixel error size ∆l (Sec.
1.7.5).
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• The contribution of the vertical reconstruction is small in general, but has a positive
influence on the overall results (Secs. 1.7.6 and 1.8.4).

• The numbers of possible depth estimates are very similar for different cameras (α) at
fixed resolution of the captured images (Sec. 1.7.7).

• The size of the one-pixel error ∆l is also similar at similar number of possible depth
estimates for different cameras (Sec. 1.7.7).

• The reconstruction process can execute in real time (Sec. 1.8.2).

• The reconstructed points lie on concentric circles centered in the center of rotation
and the distance between circles (the one-pixel error ∆l) increases the further away
they lie from the center (Secs. 1.7.4 and 1.8.3).

• The linear model for estimation of angle ϕ have been proved better for a given set of
parameters in comparison to the non-linear model (Sec. 1.8.6).

• We can achieve similar reconstruction accuracy with panoramas build from only one-
pixel column (Ws = 1) of the captured images in different rooms, even with different
cameras (Secs. 1.8.7 and 1.8.8).

• The remaining error in accuracy could be attributed to a number of possible reasons
(Sec. 1.8.9).

• Processing undistorted images in general brings better though comparable results, but
undistorting the sequence can be time expensive task and we are forced to re-estimate
some parameters of the system after the distortion is corrected (Sec. 1.8.10).

All this is true for the cameras used in the dissertation, while for really wide angle
cameras some conclusions perhaps demand further investigation in direction presented by
the conclusion.

We should also expose the fact that we have developed few other simple procedures along
the way, which have been proved useful in various aspects. Like the method for estimating
the position of the optical center (Sec. 1.7.2) or the method for defining the maximal reliable
depth value (Sec. 1.7.5).

In the end, let us write only the conclusion of all conclusions, which answers to the
question written at the very beginning of this chapter (Sec. 1.1.1): Can the system be used
for robot localization and navigation in a room? According to the accuracy achieved the
answer is: Yes!

Our future work is directed primarily in the development of an application for the real
time autonomous localization and navigation of a mobile robot in a room.
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