
Using computer vision in a rehabilitation method of a human hand
J. Katrasnik1, M. Veber1 and P. Peer2

1 Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
2 Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

Abstract— We developed this program for the purpose of
a rehabilitation method that requires a patient to move an
object around with his hand. Using a black and white firewire
camera the program determines the position and orientation of
a black rectangle on a white plane. The user must enter the
length and width of the rectangle before the start. With this
information the position is determined even if a part of the
rectangle is obscured by a user’s hand. The program works in
real-time (15 to 20 frames per second).

Keywords— computer vision

I. INTRODUCTION

One of the major goals of rehabilitation is to make quan-
titative and qualitative improvements in daily activities in
order to improve the quality of independent living. When
parts of the brain have been impaired by trauma, incomplete
spinal cord injuries and stroke, the functions that those parts
of the brain had must be relearned. Relearning is aided by
rehabilitation. Relearning is fastest when rehabilitation is
done early and if the patient performs task oriented exercis-
es [3]. By using virtual reality in rehabilitation task oriented
exercises become more motivating and engaging than for-
mal repetitive therapy. Another positive aspect of virtual
reality is that it is programmable, which means that tasks
can be adapted to the patient. When the patient advances,
tasks can be made more difficult.

Our motivation was to develop a cheap method for mea-
suring position and orientation of an object and use that
information in virtual reality exercises. Position and orienta-
tion can be measured with commercial products such as
OPTOTRAK. The main drawback of using such products is
their high price. For example OPTOTRAK costs approx-
imately $150 000. If we could develop a system, that would
use only a black and white firewire camera and a PC, this
rehabilitation method would be a lot more accessible to the
patients, which could then do rehabilitation at home. That
would reduce resources needed for rehabilitation and in-
crease the time a patient spends in rehabilitation.

Our goal was to determine if the position and orientation
of a black rectangle, with known dimensions, on a white
plane could be accurately resolved with a computer vision
system in real-time. The system must be able to find out the

position of the object even if it is partly obscured with the
user’s hand.

Fig. 1 Captured image

II. TOOLS AND METHODS

A. Tools used

In developing this system we used some computer vision
algorithms already implement in OpenCV [1], an open
source computer vision library for C++. We also used this
library for capturing images from the camera, displaying
images on the screen and saving images to disk. For writing,
compiling and debugging the program we used Microsoft
Visual Studio 2005. For capturing the scene we used a black
and white firewire camera with resolution of 640x480 pix-
els. The computer used for processing was a PC running
Microsoft Windows 2000. The rectangular object was made
of wood and painted black.

B. Image processing

We captured the image from camera using OpenCV [1]
functions. On the captured image, which can be seen in
figure 1, we used the Canny edge detection algorithm,
which is implemented in OpenCV [1]. In order to find the
rectangle in the picture we first needed to detect straight

lines. We did this with a function cvHoughLines2 with the
CV_HOUGH_PROBABILISTIC parameter that returns a
sequence of line segments. This function is implemented in
OpenCV [1]. These line segments can be seen in figure 3.
They are drawn in different colors. Figure 2 shows the out-
put of the Canny algorithm. The Hough transform, Canny
edge detection algorithm and their effects are described in
[2].

Fig. 2 The result of Canny edge detection algorithm

Fig. 3 Straight lines detect with cvHoughLines2

C. Finding the rectangle

When we had the data of all of the line segments in the
picture, we needed to analyze that data, in order to find the
line segments that form a rectangle. We calculated the an-
gles that the line segments form with the x axis and then we

compared these angles with one another. If the difference
between two angles was 90 ± 2 degrees, we calculated next
parameters:

• the shortest distance between the ends of line segments

• length of both line segments

• the angle between the line segments

• the orientation of the angle that the line segments are
forming

• the position of the vertex of this angle

We saved these parameters in a structure representing a
right angle. If the orientation and the vertex in multiple
angles were very close together we averaged these right
angles. We averaged all the parameters, except the lengths
of both line segments; instead we kept the longest lengths.
The angles, with the shortest distance between the ends of
line segments, longer than half of the longest line segment,
could not be a part of a rectangle and were therefore elimi-
nated.

If two angles lie on the same line and their orientation is
correct, they form a side of a rectangle. So we checked each
ray of each angle, if on any of these rays lays a vertex of
another angle. If there was another angle we compared the
orientations. If the difference in orientations was ±90 de-
grees the two angles formed a side of a rectangle. Whether
this side was the longer or the shorter one, we found out by
comparing the length of the line segments. If the line seg-
ment lying on the ray, we were checking, was longer than
the other line segment of the angle, then that side of the
rectangle was the longer one. We only searched for the
shorter sides of the rectangle, because the user would prob-
ably be touching the longer sides.

One side of the rectangle and the information about the
model is enough to calculate the position of the center and
the orientation of the rectangle. Dimensions of the model
were scaled to fit to the short side found by the algorithm. If
two short sides were found we calculated the position and
orientation with both of them and then averaged the results.

III. RESULTS

The system calculated the position and orientation of the
rectangular object even if someone was holding it with his
hand. The system could not detect the object if it was mov-
ing to fast, if it wasn’t parallel with the plane it was on and
if the lighting was inadequate. The system works as fast as
15 to 20 frames per second. The output of the program can
be seen in figure 4.

Fig. 4 Rectangle detected by the system

IV. DISCUSSION

The system worked well, if the lighting was good and if
the object wasn’t moving to fast. This could be improved
with higher shutter speeds, which would also affect the
sharpness and brightness of the image. This system could be
used as a cheaper alternative to OPTOTRAK.

Using this system a simple rehabilitation method could
be easily developed. The display of the PC would show a
reference object and the object in the patient’s hand. The
patient would then have to move the object he is holding in
the position indicated by the reference object. The reference

object would move around the screen and the patient would
have to follow it. The progress of the patient would be
measured by calculating the mean square distance between
the objects and the mean square difference in orientations of
the objects in a certain amount of time. The faster the refer-
ence object would move around the screen the more diffi-
cult the exercise would be.

The system would be a lot more useful if it worked in
three dimensions. This application indicates that determin-
ing the position and orientation of a rectangular box in three
dimensions could be done with algorithms similar to the
ones used in our program. Each face of the rectangular box
would have to be in different color and a color camera
would be necessary.

V. REFERENCES

1. OpenCV library at http://sourceforge.net/projects/opencvlibrary/
2. Russ J C (1995) The Image Processing Handbook. Boca Raton
3. Sveistrup H (2004) Motor rehabilitation using virtual reality. Journal

of NeuroEngineering and Rehabilitation 1:10

Author address:

Author: Jaka Katrasnik
Institute: University of Ljubljana, Faculty of Electrical Engineering
Street: Trzaska cesta 25
City: SI-1000 Ljubljana
Country: Slovenia
Email: jaka.katrasnik@gmail.com

